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Background
The Information Technology Assessment
Consortium (ITAC)
The objective of the ITAC is to provide a rapid, in depth evaluation of the
potential impacts of emerging new IT technologies to meet DoD future
needs. It will also be a key resource for senior decision makers to evaluate
the impact of global IT activity upon their missions. The ITAC’s
independent assessment activities will be led by the Institute for Human and
Machine Cognition (IHMC) and performed by a cadre of exceptionally
well-qualified teams drawn from universities, government, and industry.

The founding members of the ITAC are NASA’s Ames Research Center
and DARPA’s Information Technology Office, while the University of
West Florida’s Institute for Human and Machine Cognition functions as the
executive management agent for the Consortium. It is anticipated that other
government agencies will be added to the Consortium over time. Each
participating government agency would contribute financially to the
Consortium and jointly manage it programmatically.

The success of the ITAC rests on its ability to rapidly assemble virtual teams
of experts to perform the technology assessments. These teams are drawn
from all available sources and represent the best available expertise. The
ITAC functions as a kind of virtual assessment organization with a small
office and business development staff and little or no fulltime scientific staff.

Origins of the Study
In the spring of 2001, a comprehensive study was proposed to assess the
potential of software agents for the warfighter of the future. The study was
intended to:

• describe specific scenarios and use cases under which
benefits of agent technology are most likely to accrue—as
well as those for which agents are unnecessary or
inappropriate;

• evaluate selected aspects of current agent research and
development to determine which of these offer the most
promise in the future;

• summarize the state-of-the-art in relevant commercial
technologies and pinpoint gaps between available
technologies and military requirements over the next several
years;
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• recommend strategies to increase the likelihood that key
research breakthroughs and relevant commercial software
solutions will be available in time to meet warfighter needs;

• identify risks associated with various aspects of agent
technology, and the likelihood of future aggravation or
mitigation of these risks.

Upon approval of the proposal, a core assessment team spanning the various
areas of expertise required was rapidly assembled and began the substantial
task of study and authoring to develop the body of the report. As part of this
process, a seasoned corps of domain experts were contacted to help focus
the study and provide military expertise in key areas on the basis of their
experience. Following the initial authoring and discussion phases, a broad
team of agent researchers performed in-depth reviews of the material relevant
to their area of expertise. Their efforts were intended to ensure technical
accuracy and clarity. In most cases these individuals made substantial
contributions in the form of additions and recommended revisions, and thus
they are listed as contributors. Following an additional period of critical
review and revision, and with the kind encouragement of our sponsoring
organizations at DARPA and NASA, we hope to publish this report for
wider distribution in book form.

Overview of Software Agents for the
Warfighter

Software Agent Technology
(To be added)

Synopsis of the Major Topics
(To be added)

Structure of the Report
The remainder of the report is structured into two major parts. Part 1 gives
examples of various relevant military application areas and describes how
different aspects of agent technology can be woven into each of them. Part
two is organized around various technical components of agent technology.

The military application areas discussed in the next section of Part 1 are:

• Advanced Sensor Grids
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• Unmanned Autonomous Systems

• Advanced Command Posts

• Mobile Operations

• Joint/Coalition Operations

• Logistics

• Information Assurance

Part 2 is organized around discussions of the following technical
components:

• Agent Architecture and Capabilities

• Agent-Agent Interaction

• Human-Agent Interaction

• Semantic Integration

• Mobile Agents

• Agent Infrastructure

In each chapter of Part 2, we give a brief overview of the technical
component, followed by a discussion of five topics:

1. Relevance to the warfighter. Use cases under which benefits this agent
technology component are most likely to accrue, as well as those for which
this it is irrelevant or inappropriate. A key theme that cuts across most of
these application areas is that of network-centric warfare.

2. Technical description. Summary of the state-of-the-art in relevant
research and commercial technologies. An evaluation of this aspect of
current agent research and development to determine which of the many
alternatives being pursued offer the most promise now and in the future, and
which have most relevance to the selected military scenarios.

3. Risks. Identification of risks associated with the use of this aspect of agent
technology, and the likelihood of future aggravation or mitigation of these
risks.

4. Forecast. Summary forecasts for each element of this agent technical
component in an extended table.  Where appropriate, assumptions behind
the forecast are stated, as well as indications of confidence in each the
projections.

5. Summary and recommendations. Gaps between available technologies
and military requirements over the next several years are pinpointed and
strategies to increase the likelihood that key research breakthroughs and
relevant commercial software solutions will be available in time to meet
warfighter needs are recommended.
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Military Scenarios
Advanced Sensor Grids
Advanced Sensor Grids are networks of large numbers of autonomous
sensor devices with onboard processing, networking, and, potentially, storage
capabilities. An example of such an approach is the Navy’s Expeditionary
Sensor Grid program.

A sensor grid may consist of several different types of sensors ranging from
satellites to unmanned vehicles of all types to ground or underwater sensors
with acoustical, seismic, and/or visual data collectors to undersea sensors.
The collection of sensors may range from static to highly dynamic (with
various mobile sensors such as UAVs joining and leaving the sensor
network).

The goal of advanced sensor grids is to provide information regarding
entities of interest in a comprehensive and timely manner. This information
must be accessible at individually appropriate levels of detail to all echelons
of warfighters from individual soldiers to high-level commanders.

Sensor grids pose several challenging problems. Software agent
technologies are well suited to address many of these:

1. One of the key problems of sensor grids is the significant increase
in the quantity of raw data that is gathered and made available. This
raw data needs to be appropriately processed and made available to
users based on their individual requirements. Confidence values need
to be computed for observed phenomena based on the performance
characteristics of the class of sensors in question as well as the
historical accuracy of individual sensors. Moreover, data from
several different sources (sensors of different types or at different
locations) needs to be integrated in order to confirm or deny
hypotheses regarding observed phenomena or to speed up
classification of phenomena.

2. Another challenging problem facing sensor grids is management
of the large numbers and varieties of sensors. Management includes
turning sensors on and off in order to conserve battery power,
detecting failed sensors, configuring sensors to provide the
necessary information at the right resolution and update rates, and
enforcing any policies governing access to the sensors by the various
users. Management also includes compensating for failed sensors
and balancing load across the set of available sensors - though much
of this behavior can be achieved through self-organization among the
entities in this kind of distributed system.

3. Bandwidth optimization is yet another problem. The available
network bandwidth in a battlefield environment is often limited and
could be easily overloaded by many sensors simultaneously
transmitting large quantities of data. Transmitting data also

Overview
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consumes power and hence should be controlled when sensors are
operating on limited power sources. Again, sensor-grid management
can be sensitive to resource availability and can adapt dynamically as
necessary.

4. Agents in advanced sensor grids will interact to exchange and fuse
information to cooperatively synthesize more precise and complete
understandings of the environment. Active sensing might require the
coordinated efforts of agents managing several sensors (e.g.,
triangulation). Agents will also negotiate over competing demands in
highly-dynamic situations and coordinate over the combined
application of sensors to improve precision and reduce uncertainty.
For the warfighter, this means that the sensor grid is applying its
assets in a coordinated fashion to ensure the best feasible picture of
the ongoing operational environment.

A conflict has occurred and we are trying to track down an elusive adversary
in mountainous country that is hard to patrol. We deploy a Battlefield Mesh
(Libicki 1995)1 built from millions of sensors, emitters, and sub-nodes
dedicated to the task of collecting every interesting signature and assessing
its value and location for targeting purposes. They are delivered by air and
distribute themselves in nooks and crannies all over the area of interest.
Many of these sensors have already appeared, albeit in rudimentary form. In
the future, they will be cheaper and more sensitive, capable, collectively, of
receiving signals from the various parts of the electromagnetic spectrum.
Some would be optical sensors -- perhaps small charge-coupled devices tied
to neural net processors; they could cover not only the visible range, but also
near-ultraviolet, and all shades of infrared. Others would act like small radar
detectors, either singly, or in computational harmony with their like-minded
neighbors. Chemical sensors could detect the passage of machines or their
men. Some would sense changes in magnetism, air pressure, sounds,
vibration, or even gravity, and so on.

Why have we deployed so many sensor types? The easy answer is that
warfighting conditions differ and we are unsure of our opponents’ counter-
measures. Some environments (e.g., open desert) and targets (e.g., surface
vehicles) are easy to surveil; other environments and targets are tougher. To
detect the latter may require exploiting the inherent differences between
machinery and background that register on other senses. The hard answer is
that single-sensor surveillance gives the target a single-dimension problem to
solve. Tanks strive to be hard to see and thus employ camouflage and night
movement. Submarines strive to stay quieter, using size, baffling, and ultra-
smooth running machinery. Aircraft are stealthy by controlling their radar
reflections and by engineering special shapes and coatings. Multi-sensor
surveillance, however, complicates the single-dimensional problem by
obviating techniques which dampen emissions of one type at the expense of
another; moreover, the multi-dimensional problem they create becomes that
much more difficult to solve.
                                                
1 The following material is adapted liberally from Libicki 1995.

Agent Scenario
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No one sensor need necessarily detect every emanation from a target. The
more capabilities a sensor combines, the more expensive it gets, thus the
fewer would be used and the easier each target would be to find and kill.
Alternatively, specialized, perhaps even single-purpose sensors, can each
collect signatures, exchange them with subnodes and collectively form a
picture of a target in its environment. Eventually, the Mesh self-organizes
and settles down to a relatively ‘steady state’ -- now it is ready to do useful
work.

The Battlefield Mesh would contain cheap disposable emitters to illuminate
targets with reflected radio waves, generate confusing signatures, and
broadcast local positioning signals for precise targeting. Although accurate
positioning systems are critical for the operation of a Mesh, full GPS
capability need not be ubiquitous (GPS can also be jammed). Emitters that
know where they sit and can broadcast relative distances to the other
elements of the Mesh may suffice and positions can be inferred locally.

Some sensors may be equipped to move; they may have little cilia-like feet
on land, fins in the water, and an airfoil (see below) in the air. Mobility
would help right errantly laid sensors, take high ground (trees, houses, hills)
in appropriate terrain, and cluster to where other cuing systems suggest the
presence of target-rich environments. Movable sensors fitted with precise
chemicals or explosives (e.g., for taking out a critical piece of electronics)
could be the killing mechanism in some cases.

Perhaps the prototypical sensor would be a sandwich the size of a penny.
On top would sit a photovoltaic energy source or optical sensors; next would
be a sliver of microprocessor, perhaps a chemical or acoustic sensor, and
then a penny-sized battery, a transmitter for an antenna jutting out to the side,
and finally some anchoring pod on the bottom. Another design would make
the sensor look like a weed plant of a meter or two length. The shaft would
be the antenna; the head a spectral sensor device capable of seeing as far as a
human can, and the roots would be acoustic and vibration sensors, as well as
anchors. To use yet another analogy, sensors might be the size of bottle
caps; emitters, the size of soda straws; and mini-projectiles the size of coke
bottles.

Unmanned aerial vehicles act as relay stations and help collate, fuse, and
transmit the collective vision of the Mesh -- returning a coherent image,
much as the retina does to the brain. Or opponent’s every move it detected
by one of the sensors - every change in temperature, noise, or other signature
creates a disturbance in the Mesh. Patterns can be detected and hideouts
located. Offensive action can now be taken and the enemy defeated.
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Unmanned Autonomous Systems
Unmanned Autonomous Systems (UAS) will be an increasingly important
part of future military programs. Benefits of such systems include reduced
manning, fewer casualties, the possibility of independent (split) operations,
and the ability to deal more adequately with certain types of complex threats.
Currently, there are over 45 UAV’s and UCAV’s, over 30 UUV’s, more
than 10 UGV’s, and more than 10 USV’s in various phases of testing and
development,2 besides a variety of unmanned space platforms. While a
greater degree of standardization and modularity is foreseen in the future,
hard requirements for different physical configurations and capabilities as
well as the continued evolution of technology mean that multiple hardware
platforms in each family of vehicles will continue to be a necessity. Agent
technology can provide help in dealing with this heterogeneity by
implementing capabilities-based modeling, management, lookup, and
engagement of autonomous systems. Using sophisticated agent-based
matchmaking and teamwork-based coordination approaches, these diverse
platforms can be managed as a system of collaborating systems with
common high-level interfaces and communicating in human-intelligible
dialogues rather than as independent entities with diverse low-level API’s
and incomprehensible system messages.

Agent technology can be of assistance in many areas of automation,
including providing automated launch and recovery, automated sustainment,
and especially a means of common control across diverse platforms and
capabilities. While some efforts toward commonality within platform types
are underway (e.g., Navy Tactical Control System (TCS) for UAV’s, Army
Joint Architecture for Unmanned Ground Systems (JAUGS)), there is a
need for an unmanned system-common control architecture across all
vehicle types. In such an architecture, high-level requests from a single
warfighter user could simultaneously task and control multiple
heterogeneous vehicles, and each vehicle could provide services and data
products in an integrated fashion. Such an architecture would go beyond
current prototypes that attempt to control autonomous vehicles as a relatively
simple “swarm” to allow for rapid sophisticated configuration and delivery
of effects based on operator intention, across the equivalent of a battle group
package. Going beyond mere coordination of flight and simple task
execution, agents operating on-board or off-board can assist controllers in
directing the high-level behavior of a diverse set of vehicles that are capable
of effecting many error recovery procedures autonomously.

An additional role of agents is in increasing the span of human attention by
providing assistance in monitoring and detection. Like air traffic controllers
                                                
2 The acronyms for these unmanned vehicles (U*V) stand for: aerial, combat aerial,
underwater, ground, and surface types.

Overview
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and other radar monitors, these warfighters must identify multiple radar
targets simultaneously and keep track of (i.e., maintain in short-term
memory) multiple contacts that must be classified (light or heavy, friend or
foe) and level of threat determined (if any). This difficulty is compounded
by the stress of time urgency and threat to human life. Under high workload
and stressful conditions, a decision must be made as to whether or not to
intercept or redirect the contact. The likelihood of an error increases with the
number of targets present. Human operators are prone to performance
changes due to fatigue or altered workload, and to procedural errors, such as
habit capture errors. By enabling detection of these changes, an intelligent
system could transparently hand off tasks to autonomous agents to reduce
workload or prevent mishaps.

Unmanned systems will operate in teams that must collectively achieve
mission goals as specified by human operators. The systems will interact to
share intelligence and to reactively readjust team activities to achieve
objectives in the dynamic environment. The warfighter will be able to task
these systems to pursue objectives that people should not pursue because the
missions are too dangerous, remote, or prolonged.

In other areas of communication and control of unmanned autonomous
systems, agent domains and policy-based management can be used to
express complex requirements and to establish explicit behavioral
constraints that put absolute bounds on the kinds of actions to be performed
and the way in which they are performed. Mobile agent technology can help
reduce network bandwidth usage in communication of information, reduce
network latency for real-time control, reduce polling by installing custom
monitors, and support disconnected operation.

Mobile agent technology can be used to implement dynamic configuration at
the software level, by carrying new capabilities to unmanned systems at
runtime: functions can be transferred from one platform (vehicle or sensor)
to another, and new algorithms, missions, and functions can be dynamically
downloaded.

UAVs are already acting as airborne relay stations, fusing and forwarding
information being gathered from the Mesh. However, the UAS are also an
extension of human warfighters into the battlespace and can be thought of as
a kind of cognitive prosthesis. Having detected several active hideouts, it is
now time to move against the enemy, and the UAS allow us to reach out and
touch the enemy remotely.

However, friendly forces are also acting on the ground, and as the operation
moves on to the point of attack, the UAS operators become tense. Agents
located with the warfighters sense physiological indicators of increased
cognitive and physiological stress and inform the UAS of this fact. The
UAS alter their behavior, increasing their level of autonomy slightly and
compensating for uncharacteristic inputs from the human operators.

In the few minutes leading up to the start of the assault, the UAS operators
hand over targeting authority to friendly forces on the ground who are in the
best position to provide exact and decisive guidance to the UAS.

Agent Scenario
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The attack is launched. Meanwhile, other disturbances are noted by the
Mesh that might indicate enemy forces deploying from a nearby cave exit,
some apparently trying to escape, others trying to mount a flanking attack.
Specific simple warning is given and the related information made available
to those who are interested-- on demand. The friendly forces are not deluged
with information at this critical time. Air support is called in and the UAS
transfer information: sensor-to-shooter.
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Advanced Command Posts
Currently, the configuration of C4I systems and command centers is largely
determined in advance of conflict. This means that processes (which may
turn out to be faulty) are unwittingly embedded into the software and enforce
rote procedures. This is fine until the military imperative demands flexibility
or until strategies, tactics, or processes change. However, this difficulty is
compounded by the fact that most of battle management is event-driven and
not process-driven -- a fact not acknowledged in most requirements-capture
exercises. What is really required is a set of tools and mechanisms to enable
Command Post reconfiguration on-the-fly, so that warfighters can respond
to dynamic military imperatives in the battlespace.

Also, increasingly, terms such as ‘distributed cognition’ (Hollan, Hutchins
and Kirsch 2000) or augmented cognition’3 are being used for the way
humans off-load cognitive tasks into the information and physical domain.
Clearly, C4I systems currently increase cognitive load and make things
worse. Instead, they need to be designed in a different way so that they are
malleable and are receptive to the tasks we give them. So, in future
Command Posts, humans will not be deluged with information, because they
will be able to shape the behavior of the command center and C4I systems to
their will. They will be able to drive the enterprise – i.e., be active decision-
makers, not dumb process followers -- such that the C4I tools and
infrastructures fit their behavior to the human decision-making requirements
and imperatives, not the other way round.

Multi-agent systems, therefore, aim to address three facets of the command
and control problem. First, there is the problem of delegation and execution
of directives down from higher levels of command. Agent technology aims
to enable a higher degree of autonomy and flexibility than has been possible
with rigid command systems of the past. The claim is that on-board
automated planning and inference capabilities in such agents would allow
them to cope more adequately with situations involving significant
uncertainties and unforeseen contingencies. Second, there is the
corresponding problem of information flow, as data and analytic results mov
upwards from levels of sensing and observing to inform the actions of
commanders at different levels. It has been proposed that agent technology
assist in providing secure intelligent filtering, data mining, abstraction, and
routing of information to those who need to know. Finally, there are the
problems of collaboration among diverse command and control operatives.
Multi-agent systems typically incorporate some kind of theory of
coordination and teamwork that aims to provide a greater degree of
robustness to the complexities of interorganizational interaction.

Agent technology has enabled the size of the deployed command post to be
reduced and has streamlined command post operations by allowing the
                                                
3 See http://www.darpa.mil/ito/research/ac/index.html.

Overview

Agent Scenario
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human commanders to offload routine and more mechanical activities to
automated agents. These agents, in turn, can interact with each other to
monitor, assess, deconflict, and redirect activities occurring across the
command.

Each warfighter has its own interface / mediator agents associated with it that
are aware of the current shared work context. Some are involved in
controlling the UAS, and others are monitoring the execution of the plan and
trying to detect deviations or new events which will require corrective action.
They are assisted in this by their agents who are monitoring resource
allocation, network setup, and overall control functions across the distributed
entities. The supporting agent architecture accounts for this by modeling
other agents at different levels. At the simplest level agents have abilities to
predict, constrain, and set policies for behaviors of other agents. At more
complex levels agents model and understand other agents and account for
their motivational and informational states. Humans can neither do this, nor
would they want to, and can rely on the monitoring and housekeeping agents
to do this task for them, confident that malicious or atypical behavior will be
reported.

While the offensive operation is underway in the mountains, the command
post is ‘in the back seat.’ However, they are still monitoring the wider Mesh
though their ‘decision-desktops,’ which are configured to meet their
individual warfighting requirements. Their interface agents monitor what the
humans are doing, their stress-levels, where their attention is on the desktop
and the tasks they are carrying out. The agents will update information on
demand and will cue other agents to start gathering updates on areas of
interest, often before the human actually asks for it.



Part 1: Overview and Introduction

12

Draft 14 October 2002 Do not quote or distribute

Mobile Operations
Mobile operations are characterized by low and intermittent connections as
the warfighters may not be able to communicate or may be forced to
communicate in short bursts to avoid detection. In this setting, mobile-agent
technology eases the task of developing software systems. A mobile agent,
capable of performing some task in its entirety, can be sent to or from the
warfighters to avoid the need for continuous data transmission. This agent
can continue its task even if the network link becomes completely
unavailable, either because of mission requirements for emissions control or
because of physical interference, physical separation, or hardware problems.

Moreover, the agent can change its behavior or relocate itself as mission and
network conditions change. For example, if emissions control becomes
essential, an agent running on a remote sensor platform might relocate itself
to a less powerful sensor on one of the warfighters themselves, avoiding all
RF emissions at the expense of lower sensor resolution.

Finally, the entire communications infrastructure, not just application-level
tasks, can be implemented with mobile agents. As conditions change, new
communication agents can be distributed to all the warfighters in a particular
unit. For example, if emissions control has become important, the unit
leader’s device might deploy communication agents that compress and
buffer all data messages so that the messages can be sent in short bursts at
mission-appropriate times.

Mobile agents allow bandwidth conservation and latency reduction in many
information retrieval and management applications. For example, in a low-
bandwidth environment, a mobile agent that performs a multi-step query
against multiple databases can be dispatched close to the location of the
databases, avoiding the transmission of intermediate results across the
network. Similarly, in an unreliable network environment, the same mobile
agent can continue its query task even if the network goes down temporarily.

In the reverse direction, code that provides high-level access to a particular
database or service can be dynamically dispatched to a warfighter’s machine,
further reducing the warfighter’s reliance on the network. For example, if a
warfighter is directly or indirectly making heavy use of a particular database,
code to cache query results can be dynamically dispatched to the
warfighter’s machine. Queries that can be answered from the cached results
will never be transmitted across the network, even though the warfighter had
no pre-installed query caching capabilities.

In a Military Operation in Urban Terrain (MOUT) scenario, adversaries are
hard to locate and engage because they are embedded within the
infrastructure—not urban infrastructure but buildings around cave entrances
and structures within the caves themselves.

Overview

Agent Scenario
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From activity detected by the Mesh, snipers are suspected along the planned
route of advance of one of the ground units. Fortunately, each soldier is
equipped with a set of personal software assistants (each an autonomous
software agent) capable of communicating with the soldier out in the open
environment. These personal assistants, partly because of commands from
the soldiers and partly through their own initiative, react to the nearby sniper
threats by negotiating with nearby UASs which relay the information from
the Mesh. Some UASs agree to help the soldiers by flying above the area
where the soldiers are located; they provide critical information and thus
improve the soldiers’ situation awareness. In one case a party of people is
sensed which represents no threat. In another case a sniper is located and
identified, so the soldier is warned and he or she may be able to take the
sniper out in advance.

Unfortunately, in one case, the UASs fail to identify the sniper’s location
relative to a group of enemy soldiers. One friendly soldier finds that he is in
a position to see what is going on and instructs his personal assistant to
inform other soldiers’ personal assistants about dangers in this area of the
terrain. The personal assistants find out about each other through registering
with the UAS relay / Mesh network. Together, either with the command
from their users or on own initiative, they may now plot an alternative route
for advancing toward the objective. Of course agents must always take the
safety of humans into account in their deliberations.

This replanning of the mission requires software agents to communicate
what is happening with command and control units outside the area. The
fluid and constantly evolving nature of the situation as new information
flows in poses special challenges. A warfighter will have difficulty knowing
the relevant status of the ongoing mission as he or she undergoes sporadic
disconnections from the network and changes to positions and relationships
with other warfighters. Through the interactions between the personal
assistants and the warfighters they serve, a warfighter can better understand
the changing circumstances and make other levels of command aware of the
needs and progress of the distributed mission.
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Joint/Coalition Operations
Many of the Joint coalition issues are the same as those discussed for the
Command Post discussion. However, they pose specific problems. The
nature of coalition operations implies the need to rapidly configure
incompatible or foreign systems into a cohesive whole. Several key
principles apply:

• the issues relate to those involved in the creation and maintenance of a
coherent coalition organization (with real and virtual parts) from the
diverse and disparate ‘come-as-you-are’ elements provided by the
coalition partners (people, processes, and systems);

• all coalitions are a dynamic (ever-changing) mix of heterogeneous and
disparate elements and maintaining the cohesiveness of the coalition
requires a continuous, pro-active readjustment process;

•  multiple coalitions may be active at any one time (‘competing’ for
resources, etc.) and a decision in one may affect another concurrent
operation;

•  partners may be part of a coalition, but their contributions may be
anonymous (to protect sources, etc.);

• coalition elements should be supported by appropriate IT in achieving
‘unity of action’;

•  “interoperability of the mind” is as important as interoperability of
systems, if not more so;

•  the difficulties are compounded in the virtual organization of the
coalition since there will be a mix of doctrines equipment, operational
procedures, languages, etc.;

• most coalitions will have commercial / civilian elements, and  appropriate
interoperability will have to be provided with their infrastructures,

• the Command Process is ‘command led’ and is characterized by a mix
of deterministic and naturalistic decision-making styles,

•  coalitions consist of loosely connected elements working semi-
autonomously, and within their delegated authority, toward a common
goal (as defined in the Commander’s Intent); elements need to
rendezvous (and synchronize) only occasionally and must be free to
optimize locally / snatch fleeting opportunities etc.,

• supporting the achievement of command agility (working in a flexible,
unpredictable manner -- where the decision-maker is the only thing on
the critical path -- leading to decision-dominance over the opponent) is
vital; this is especially so in Execution and Battle Management;

Overview
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•  enabling commanders to access relevant coalition-wide information as
and when they demand it to support their decision-making is crucially
important to a successful outcome. Information should not be pushed
according to some rigid, pre-determined process.

•  there is a pressing need to set up coalition organizations / systems
rapidly (in order to respond decisively to emerging crises);

•  systems provided to support the humans must be robust, secure,
dynamic, and adaptable and must not constrain human actions;

• there must be no single point of failure in the coalition, and performance
must ‘degrade gracefully’ and / or systems must self-heal.

Coalition operations, therefore, are complex and heterogeneous and change
dynamically, so it is difficult to achieve and maintain coherent operations
with shared information and battlespace visualizations. In involving software
agents, it is important to focus on these coalition-specific issues, particularly
the fact that we embrace heterogeneity, not exclude it.

To guide the command and control operations of the coalition, intelligence
gathering by partner nations must be coordinated, and information must be
accessible to appropriate commanders. The networked communications
infrastructure can support this in principle, but each country has various
firewalls in place to avoid unauthorized access. Agent technologies can
secure access to intelligence, permitting the flexible modification of policies
that dictate the degree to which partners can differentially share information
and the protocols that they should obey. Furthermore, these technologies can
support the translation and transformation of information to allow consistent
semantic interpretation among coalition partners.

During the planning phases for coalition activities, agent-encapsulated
capabilities for logistics planning, battle planning, etc. can be teamed to
support the construction of effective coalition tasks that can then be handed
over to associated functional units. Because the partners might follow
different doctrines, these functional units might formulate specific plans that
unintentionally conflict with each other or with humanitarian aid groups
operating in the theater, possibly in catastrophic ways (e.g., friendly fire).
Agent technologies can support the planning and coordination phases to
detect and help resolve unintended interactions, working in mixed-initiative
mode with human operators to modify and synchronize tasking as needed
and to monitor and repair ongoing mission plans. Agents can also help
speed the right data to the right destinations.

It has been revealed that a new partner is to join the coalition, as this will
provide intelligence about the area, over the border, on the other side of the
mountains that are being attacked.

The information available from this new coalition partner must be integrated
as quickly as possible into the shared coalition grid. Several agent-based
mechanisms are used to do this. Translator and mediator agents are
employed to create an area of local interoperability between the new partner

Agent Scenario
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and the coalition. This is the quickest way to get the most important
information into the grid. At the same time, Sysads create wrappers and
‘grid helpers’ to agent-enable some of the new partner’s technology, leading
to a greater level of interoperability.
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Logistics
Logistic operations are carried out by highly decentralized systems. The
scheduling and allocation of resources must be carefully coordinated so that
personnel, supplies, and support converge in the right amounts at the right
times in the right places, despite originating from various locations and
moving using different means. Using effective interactions between
automated agents that support logistics means that the warfighter will only
be placed in combat situations where the other critical ingredients to success
are available.

Indeed, one could foresee a situation where simple agents embedded in the
barcode label of every package could interrogate the surrounding packages,
the pallete and the transport platform to see if it had been routed ‘correctly’.
A high-priority package could, therefore, alert a decision-maker if it had been
incorrectly placed on a slow transport platform such as a ship. This could
lead to packages being delegated with a certain degree of self-determination,
leading to a certain amount of self-organization in logistics delivery.

It has been decided to deploy a combined force of Army, Navy, Marine, and
Air Force units within the region to provide support for a wider military
campaign in the area. The first challenge is deployment of operational units
and the establishment of materiel distribution networks. Given the
operational requirements, logistics plans are generated for different
command levels, but the dynamic nature of the situation requires constant
updates of the plans. Front-line commanders interact with the software
agents associated with their units to provide updates to tactical situations and
resource requirements. At command levels, agents identify the deviations
from existing plans and notify the appropriate personnel. These agents share
modified plans and new operational data with agents associated with the
operational units. Once the distribution networks have been established,
transportation plans for the delivery of materiel must routinely be generated
and maintained. Once again, the dynamic nature of operations requires that
the agents associated with each unit be able to communicate relevant changes
in the plans and the environment.

The distribution networks also require real-time integration between military
units and suppliers (DoD and commercial vendors) to ensure just-in-time
delivery of materiel in support of military operations. A big problem is the
high-volume of data that needs to be integrated and dealt with. Through a
combination of shared ontologies, rich semantic markup of the data, and
agent capabilities, this data is processed more efficiently and with fewer
errors, and with less human intervention required.

Overview

Agent Scenario
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Information Assurance and Survivability
Future networked systems will range from interconnected grids to wireless
swarms of semi-autonomous sensors and wearables. As the underlying
networked software systems scale in the hundreds of thousands of nodes
and each of these nodes running small parts of a number of interdependent
distributed applications spread over multiple administrative domains, new
behaviors are likely to emerge, giving rise to hitherto unforeseen
vulnerabilities of the overall infrastructure. The fundamental goal of
information assurance is to make large-scale information systems robust and
able to tolerate security breaches and hostile attacks without failing.
Information assurance is a key requirement for all warfighter scenarios in
which enemy forces employ network warfare technology. Three key
challenges have to be addressed:

How can trustworthiness be achieved for large-scale, complex systems
spanning multiple organizations? Security policies will have to dynamically
adapt to enforce global security properties at trust- and administrative-
domain boundaries. Furthermore, the security infrastructure must react
automatically to reports of security flaws and breaches by installing patches,
modifying firewalls settings, and training intrusion detection systems to
recognize new attack signatures.

How can systems be made robust in the face of environmental disruption,
attacks, and instability due to rapid growth? The trustworthiness of a
system must be enforced and/or validated as that system evolves and adapts.
Composition (and decomposition) of systems out of (and into) components
must maintain specified levels of trustworthiness. The difficulty is that most
security properties are global and specifications are often local; thus there is
a need for tools to evaluate dynamic, and sometimes short-lived, composition
of heterogeneous software components.

How can secure ubiquitous computing be provided with small mobile
devices, ad hoc communications, and mobile code? The warfighters will be
equipped with small mobile devices that will require frequent software
upgrades to fix defects and overcome hardware space constraints. The code
and platforms implementing advanced information systems must be secured
from external threats, and technologies for detecting when a device has been
compromised are needed.

Agents pose both new risks and new solutions to security problems.
Granting agents sufficient latitude so that autonomous actions can be taken
without constant human supervision also creates the possibility that rogue
agents that manage to penetrate security defenses will also be allowed a
longer leash for mischief. Agent mobility opens a door of attack to malicious
hosts designed to prey on visiting agents. Uncontrolled and unauthorized
agent cloning or deliberately programmed resource-consuming agents can
be used to mount denial-of-service attacks on unprotected hosts. These are
but a few of the many scenarios that must be analyzed and countered.

Overview
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On the other hand, research in agent-related technologies has begun to
demonstrate promising new approaches to preventive defense of critical
systems and responsiveness to attacks once they occur. For example,
research in control of agent “domains” by explicit policy decisions and
sophisticated policy enforcement mechanisms claims the advantages of
formal offline policy analysis and verification, fine-grained real-time control,
and perhaps most important, high-level administrative tools that can be
effectively used by non-security experts. As another example, multi-agent
approaches to intrusion detection promise increased modularity and
coordination of information and strategy sharing among defensive
components.

Well-defined interactions and protocols between computational agents that
comprise the information network permit the kinds of authorization,
understanding, and awareness that are necessary for detecting and thwarting
security risks, ensuring that the warfighter can depend on the information he
or she is provided.

The attack on the enemy installation in the mountain caves has been partially
successful, but it is suspected that some enemy forces are escaping across
the border into the neighboring country.

Information reports are being received from the new coalition partner
covering exactly this area. UASs are maneuvered into position based on the
information being received, but the enemy forces are not detected. For
political reasons, it is not possible to deploy more Mesh entities and so there
is a risk of the enemy escaping owing to lack of information about their
position.

At this point, friendly-force Sysads become aware that a denial-of-service
attack it being mounted and become suspicious about its source. Information
agents are queried about the reliability and quality of information that has
been being received from the new coalition partner, and they reveal serious
inconsistencies.

The source of the denial-of-service attack is tracked down to the new partner,
and agent policies are changed to stop the malicious agents from using
coalition resources. Meanwhile, the interoperability gateways are disabled.
The Command Post and the friendly soldiers in the mountains are informed
of this, and information from the suspect source is now discounted by all
agents. The search proceeds.

References
C. Libicki, August 1995 “The Mesh and The Net” Martin Center for
Advanced Concepts and Technology, Institute for National Strategic Studies.
NATIONAL DEFENSE UNIVERSITY.

Hollan, J., Hutchins, E., & Kirsh, D. (2000) Distributed cognition: Toward a
new foundation for human-computer interaction research. University of
California, San Diego.

Agent Scenario



Software Agents for the Warfighter
Part  2: Technology Components

1

Draft: 14 October 2002

Agent Architectures and Capabilit ies

Brief Overview
Agent architectures provide the blueprints for the design and development of
individual agents. The role of an architecture is to define an agent’s
capabilities and to delineate a separation of concerns; thus it defines the
features of individual components, the information and control flows
between them, and the modes of interaction between the amalgamated
components and an environment. Agent capabilities instantiate components
of the agent architecture, either for operation within the architecture itself, or
as a means for providing a capability to the users of the agent. There is no
universally applicable agent architecture and so many different types of
architectures have been developed. Each architecture has its strengths and
weaknesses that make it suitable for particular roles or particular types of
problems. Given this fact, this chapter considers a progression of agent
architectures, from those that define simple reactive agents all the way up to
self-modifying, time-constrained, proactive agents. At each stage in the
progression, we consider some of the capabilities that agents must have to
succeed at that level and summarize the state of the art of such capabilities.
The chapter concludes by outlining the main challenges still remaining
before agents with various capabilities can satisfy the needs of the scenario
applications.

In a sense, the topics in this chapter are at the crux of developing agent-
based technologies that are relevant to the warfighter. While issues of
interaction and interoperability are clearly important, none of these matter if
the agents with whom humans and other agents interoperate are unable to
perform the tasks for which they were designed. Thus, in this chapter, we
talk about capabilities such as information fusion, management of
uncertainty, planning, time-critical responsiveness, and adaptation, without
which the use of agent technology for applications like advanced sensor
grids, command and control, and autonomous and mobile operations, would
be impossible. Successful agent technologies will allow the warfighter to
delegate routine or hazardous tasks to agents, which in turn will work
“behind the scenes” to provide timely information or suggestions about
courses of action to the warfighter as dictated by the evolving situation and
the expertise embodied in the agent’s capabilities.

The main risks of current trends in agent architectures and capabilities are
the following. First, there is a tendency to want to create and employ the
most sophisticated agent for an application domain; a better understanding
of the different gradations of agent complexity and how they could be
matched to need could lead to more robust, efficient, and cost-effective agent
systems. Second, except for the simplest kinds of agents, verification and
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validation techniques fall short of permitting us to characterize in a
principled way exactly what we can expect of an agent. This situation is
similar to that of all software engineering paradigms when they involve the
development of complex systems. Nevertheless, quantifiable tradeoffs
between whether “unpredictable but powerful” outweighs “predictable but
limited” must be made. Third, as individual agent capabilities mature, it will
become increasingly important, but difficult, to insert these modules into
alternative agent architectures while remaining true to the spirit and
assumptions of the different agent architectural frameworks. Fourth, it is still
not a common practice to re-use architectures or architectural components.
This leads to significant duplicated effort and hinders the general rate of
progress in architecture development.

Each year, the capabilities of agents expand to address problems that were
once considered far too difficult for mere computational agents. While
agents have indeed come a long way the vision outlined in this document
extends far beyond the current state of the art. As existing architectural
designs and agent capabilities mature, they will be augmented by the cutting-
edge results being developed (and yet to be developed) by researchers to
move agents the next steps, so that the ambitious visions laid out in this
document can be reached.

Agent architectures at all levels of sophistication, from those supporting
reactive agents up to self-modifying and self-aware agents, need further
development. Reactive architectures need to support verification and
validation of performance within guaranteed time-critical boundaries. Agents
with world models need more efficient and powerful mechanisms for
combining evidence and drawing inferences about the world. Goal-based
agents need to be able to form plans in highly complex situations despite
resource limitations. Agents operating under less certainty need to formulate
policies to do the best they can in response to the uncertain unfolding of
their environment. Resource-limited and time-constrained agents need to
balance responsiveness with farsightedness - all in haste, and self-modifying
agents need to make changes that are justifiable and still ensure sufficient
predictability in behaviors upon which operators depend. Much progress has
been made along many of these fronts, but much remains yet to be done. In
particular, further work should be strongly encouraged in developing agents
that are capable within the constraints of dynamic and uncertain application
domains. In addition, encouraging research in fundamental agent theory is
critical to the future development of sound agent and multiagent
architectures, and a future “science of agent architectures”.
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Relevance to the Warfighter

Advanced sensor grids can bring together far-flung information to
potentially improve a warfighter’s awareness dramatically, but they risk
overwhelming the warfighter with too much data. Advanced sensor grids can
be implemented using agent architectures and capabilities that incorporate
complex perceptual methods for correlating disparate data and information
to present a more consolidated picture. The agents should use world models
designed to explicitly represent uncertainty and to index information based
on temporal and spatial characteristics. By modeling the activities as well as
unique characteristics of warfighters, agents in advanced sensor grids should
be capable of actively monitoring for just those crucial aspects of the world
model about that the warfighter needs to be aware in the current context.

Unmanned autonomous systems are typically dispatched in hazardous
applications, where timely reaction to mission-critical emergent phenomena
is vital, and where assurances about correct performance is crucial as the
systems operate autonomously. Emerging agent architectures and
capabilities promise to provide time-critical responsiveness, along with the
ability of a system to autonomously reformulate its plans of action and
possibly even to modify its behavior based on its experiences. These
capabilities will free the warfighter from overseeing the activities of the
system, and allow the warfighter to depend on the autonomous operation of
a system

Command post operations can involve the attention of numerous warfighters
to monitor and control the battlefield situation. The use of agents with
advanced capabilities for information fusion, situation assessment, planning,
resource allocation, and so on, can offload tasks (especially more routine
tasks) from humans, freeing up warfighters for other duties. Such agents
will need to be verifiably capable of performing command and control tasks
at a level at or above human performance, and where they fall short will need
to know their limitations and when to bring human intelligence into the loop.

Mobile operations put particular stress on architectural capabilities for
drawing inferences about a dynamic environment that is only partially
accessible for sensing. Associating agents with a mobile warfighter can
allow those agents to continuously process incoming information and fuse
that information with past experiences and knowledge of the environment to
provide the warfighter with awareness that takes into consideration the
changing context (including physical location, role, and objectives). Given
the complex and often incompletely-achievable objectives of a mission,
agents associated with a mobile warfighter can formulate and continuously
revise projections about the future, along with measures of likelihood, to help
the warfighter make the most rational decision possible, despite rapid
changes to the situation and to relationships with other warfighters due to
mobility.

Advanced Sensor
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Joint/Coalition Operations will assume many of the same capabilities as
advanced command posts, augmented by agent capabilities for coordinating
action and sharing information across multiple warfighting units. Those
further considerations are predominantly the subject of other chapters
(agent-to-agent and agent-to-human interaction); it is important, however,
that the agent architecture support these augmented capabilities for multi-
agent reasoning.

Logistics operations require advanced capabilities for planning and resource
scheduling; such capabilities can be embedded in agent architectures to
support automated planning and scheduling in complex, uncertain, and
rapidly evolving situations. Furthermore, logistics operations require
monitoring the execution of logistics plans, and rapid recovery when some
operations fail. Such operations challenge not only the management of world
models, but also time-constrained reasoning for quick recovery. Used
appropriately, these agent technologies can offload from human warfighters
the logistics operations that are either routine or require a level of continual
attention surpassing human abilities. In addition, the warfighter in the field
will benefit from the use of these agent technologies because the appropriate
materiel will be where the warfighter needs it, when it is needed, more
reliably.

The integrity and pedigree of data are important for information assurance.
Agents need to be able to associate justifications for all their inferences, and
remember dependencies among data for backtracking. These justifications
allow an agent to track down erroneous conclusions, and retract data that
lead to bad conclusions. A warfighter should be able to act with agents to
probe their justifications for assertions about the world or recommendations
about actions, to allow the warfighter to understand not only the agent’s
results, but also the limitations behind those results. The ability to provide
justification for decisions should be part of an agent architecture for agents
that are providing decision support. Providing such justification can be
particularly challenging for agents that are self-modifying, where they need
to be able to show evidence for how previous experiences have led to
changes in their internal capabilities.

Joint/Coalition
Operations

Logistics

Information
Assurance
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Technical Descript ion

The fundamental behavior of an agent is to act to bring about some desired
change to its environment. Typically, this requires the agent to perceive
whatever it can (through its own sensing or through receipt of information in
some other way, such as through messages from other agents) in order to
form a view about the current state of its overall environment. The agent will
then deliberate based on this view to decide on an action to take that it
believes will change the environment for the better (at least based on the
agent’s preferences). Finally, the agent will act on its decision. An agent will
cycle through this perceive-decide-act cycle repeatedly.

Other chapters in this report describe how an agent interacts with other
agents and with humans in the course of its activities. In this chapter, we
look more directly at what goes on inside an agent: the kinds of capabilities
that agents might need to have to operate in the challenging applications we
envision for them, and the way those capabilities fit together within
architectures to structure agent programs that mesh with an environment and
task.

Before we begin, however, we should point out that the principled
development of agents and of agent architectures is a subject that is currently
undergoing investigation on many fronts and by many people. Therfore, our
treatment here will only discuss a few of the representative ideas. Readers
interested in more can consult various collections (Huhns and Singh 1998),
conference proceedings (Agent. 2001 and 200), and monographs (e.g.
Wooldridge et al. 1996, 1997, 1998). Furthermore, the subject of developing
capabilities that help make computational agent programs more “intelligent”
has been the ongoing study of the field of AI, and here we cannot hope to do
full justice to that field. Again, our hope is to highlight relevant and
representative examples from the literature.

As has been done by others (e.g., Russell and Norvig 1995), we will
approach the subject of agent architectures and capabilities by starting out
with very simple agents that are capable of being successful only in very
limited ways in simple environments. We will then successively ratchet up
both the expectations on the agents and the challenges posed by their
environments. As we go along, we will be identifying architectural
components and agent capabilities that are germane, both in terms of the
state of the art and in terms of opportunities for research that will support
deployment of increasingly sophisticated agents in warfighter applications.

Realistically, large multifaceted systems for the types of applications of
interest in this report would typically be composed of standard components
and objects, supplemented by a variety of agent types (figure **). These
would range from agents that are relatively simple “automatons” with very
specific and limited roles in the system, up to agents that are more “human-
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like” in the diversity of capabilities that they embody and the degree to
which heavy demands can be placed on them. Between these extremes are
other varieties of agents. Just as in traditional human organizations where a
smaller number of top-level decision makers have the most latitude for action
and are in turn supported by successively large numbers of more highly-
constrained agents at layers below, we would expect that the number of
agents of each type in the system would decrease as one moves up the
pyramid. The figure is also meant to illustrate that there is a more or less
unbroken continuum between sophisticated distributed object architectures
and simple agent architectures. As distributed object systems become more
capable and as agent-based systems of different varieties become more
common, the line between what is truly an object and what is truly an agent
(at least in these middle-levels) will become increasingly difficult to draw.
This issue will not be of any great concern for most people.

In this same spirit, we will start our review by considering the simplest
agents, which interact directly with the world, generally manifesting at least
the minimal marker of autonomy common to most agents: an independent
thread that responds to asynchronous messaging (reactive agents). The next
levels of sophistication for agents come from maintaining internal state
(modeling agents), then from explicitly representing and reasoning about
goals (intentional agents), and finally adding to that the ability to reason
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about uncertainties to assess expected utilities (utility-maximizing agents).
Above these levels, agents are capable of reasoning not only about their
external environments, but also about their own capabilities, including how
their own resource limitations impact how they should decide to pursue their
current (often time-critical) goals (self-aware agents). Beyond that, they can
reason about how they might modify their own internal machinery (their
“programs,” so to speak) based on experience in order to perform even
better in the future (self-modifying agents). Finally, at the top of the pyramid
is the agent that not only reasons about itself and its environment but also
about the other agents (including humans) around it, including possibly their
goals, uncertainties, limitations, and adaptations (socially-aware agents).
Issues relating to agent sociality are more properly and completely covered
elsewhere in this document (specifically, the chapters on human-agent and
agent-to-agent interactions), and so our treatment here will work upward
from reactive agents and end with self-modifying agents.

It should be noted that our hierarchical ordering of the spectrum of agent
capabilities is meant to be a heuristic organizing device for expository
purposes, not a strict model of dependency relationships among the layers.
One could arguably contend for different orderings for different purposes.
Moreover, basic aspects of social capabilities (such as agent messaging) and
of rudimentary self-modifying behavior (such as reinforcement learning) are
often present in simple agents. Furthermore, some important system features
not explicitly called out here, such as mobility, are a significant and pervasive
feature that can be exploited by entities populating any of the levels. For
example, code mobility in simple systems can be exploited by distributed
object systems for purposes such as load-balancing or software distribution;
mobility can equally be well-used by sophisticated agents who have their
own private reasons for wanting to move around the network.

Reactive Agents and Actors

Reactive agents employ architectures that offer a direct and rapid connection
between sensing and acting. By analogy, this is similar to reflex-like (also
known as “stimulus-response”) behavior of biological systems. Typical
control and automation systems would fall into this category; for example, a
thermostat could arguably be classified as this rudimentary type of reactive
agent.

Strongly influenced by the behaviorist approach, Rod Brooks’ Subsumption
Architecture is the best-known example of an agent architecture for reactive
agents (Brooks 1986). In the Subsumption Architecture, the outputs of
sensors are directly connected to the inputs for actuators. When multiple
sensors are connected to the same actuator, the mechanism for how these
influences are combined is hardwired into the architecture. No centralized
control of behaviors is provided, and there is no internal representation of the
state of the world, much less about how the actions of the agent might affect
the world.
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The hardwired arbitration between multiple stimuli to the same actuator must
be carefully designed. For example priority might be given to some
behaviors over others. Consider a robot with three behaviors: avoid
obstacles, follow another robot, and wander. Avoid obstacle may suppress
the other two behaviors, follow another robot may suppress wander, and
wander does not suppress anything. As this illustrates, the design of the
policies by which reactions are chosen and prioritized itself can require
careful deliberation (and can be automated, as we shall see), but once
designed can be implemented directly into the simpler reactive architecture.

The advantage of this type of reactive architecture is the speed between
sensing and acting because there is no deliberation. Not surprisingly, it is
difficult to scale this scheme to a system with nontrivial sets of behaviors or
where sequential behaviors are needed. Nonetheless, for many kinds of
applications where the responses and their priorities are well-understood, a
reactive architecture can be used to implement effective agents.

Actor architectures (Agha 1986; Agha and Jamali 1999) seek to build on
lessons learned from well-engineered concurrent distributed object systems.
They are particularly useful as a formal foundation for agents that perform
well in applications requiring flexible and efficient naming, migration, and
coordination capabilities

Modeling Agents

The simplest addition to a reactive agent architecture is to include an internal
state. The internal state can serve several purposes. It can store a (partial)
history of the perceptions and actions taken by the agent. This helps; for
example, when the agent should take different actions in the same immediate
state depending on how the state was reached or on what actions it has
already tried. Remembering history can prevent an agent from repeatedly
“banging its head into a wall,” sometimes quite literally.

A second advantage to maintaining state information is that an agent can
base its decisions not only on specific sensor inputs, but also on processed
interpretations of those inputs, informed by other information or knowledge
that the agent has at its disposal. By fusing information into a more
comprehensive and confident view of its true situation, an agent can exploit
this more complete awareness to make subtle distinctions between its
choices of action and can thus act more appropriately given its whole
context.

Finally, maintaining internal state gives an agent the ability to extrapolate
from the history of states and the current state into the future, projecting
forward to see what states could or must arise. In our classification of
agents, this capability would typically be part of an intentional agent
(because projecting forward implies that an agent can reason about which
future states it prefers, so as to decide on its next actions to take). We
therefore postpone discussion of this usage of state until the section on
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Intentional Agents.

The state information that an agent maintains needs to be stored in a
repository. Such a repository is often called a “world model” because it
represents the agent’s internal model of the present, and possibly past and
future, status of the world. A world model captures the agent’s observations
and memories about the context in which it is operating, augmented with
inferences it has drawn about other aspects of its context based on the
combination of information available in its world model. A world model is
thus potentially useful for reasoning that requires more than one action and
where reasoning about prior experiences is required (Albus 1981; Zimmer
1996; Balakirsky and A. Lacaze 2000).

Because a world model contains data, a variety of alternative data structures
have been proposed for world modeling. At one extreme, data structures that
impose little structure on the world model permit flexible application to a
wide variety of applications. For example, a world model might simply be an
expandable list of assertions (often in a language like predicate logic) about
what is known or believed about the world. Updates to the world model
involve adding and deleting assertions, as well as often tracking the
implications of those changes in terms of making further assertions and
retractions. Using this kind of world model typically requires that an agent
scan through the list of assertions to find assertions that match against
conditions that would lead it to take particular actions which, while flexible,
can be slow for sizable world models.

At the other extreme, world models can be highly structured, where particular
kinds of information are placed in predefined places. For example, in a
blackboard-based agent architecture (Lesser and Corkill 1981), the
blackboard data structure is typically partitioned into regions intended to
house information that has undergone different levels of processing. The
application of a blackboard architecture to speech understanding (Reddy
1976), for example, placed lower-level interpretations of speech such as
phonemes into one region of the blackboard, and higher-level interpretations
such as words and phrases into other regions. Through this structuring, the
agent could more efficiently match data in the blackboard with knowledge
about what to do with (and about) this data.

At this time, there is no agreement about how world models should be
implemented for agents. A general-purpose data structure and representation
language will, by definition, be widely applicable, but so far such approaches
have tended to be slow for any particular application. On the other hand,
special-purpose approaches can be streamlined, but they seldom carry over
to other agent applications. It seems likely that, for the near future, there will
be no convergence on a standard world-modeling technique. Instead,
developers will formulate world models that strike the right balance between
generality and efficiency, and face the thorny issues of how agents that
represent what they know in different world models can still effectively
exchange information (see the chapters on Semantic Interoperability and on
Agent-to-Agent Interaction).

World model
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One capability often manifested in a state-based agent architecture is the
ability to perform information fusion. Information fusion is the process by
which an agent combines different pieces of information, acquired perhaps at
different times, or through different sensors, or even perhaps from different
agents, into a unified, “fused” view of the situation. (See
http://www.inforfusion.org/ and http://www.inforfusion.org/proposals/index.htm).

Information fusion is important in many applications where rapid synthesis
of data from different modalities is required. Information fusion can be used
to bring together disparate data from multiple sensors, where the data should
be correlated as evidence for the same phenomenon being observed. A
common technique for this type of information fusion is Kalman filtering
used in image detection, distributed signal detection, or detecting trajectories
of mobile targets (Draper et al. 1993). Information fusion is also relevant
when interacting agents share overlapping views of the same phenomena and
should combine their information to gain a better understanding of a
situation (Granlund et al. 2001). Generally speaking, the information fusion
of multiple types of data, with varying degrees of uncertainty, from multiple
sources is a long-term research challenge. In multi-agent situations,
information fusion might also need to be augmented with the ability to
explain conclusions drawn from this process, to permit argumentation and
supports agreement among the agents (see chapter on Agent-to-Agent
Interaction).

Intentional Agents

Reactive agents, whether state-based or not, are limited in their capabilities
because their mode of behavior is to monitor their sensors (and world model
if applicable) and then respond when an information pattern matches the
conditions for firing an action. The agent’s actions are thus reflexive, rather
than deliberately chosen to further the agent’s agenda – at least as far as the
agent is concerned. (The designer of the agent might have made such
deliberate decisions and then embodied them into the agent.)

The next step up that we consider in agent capabilities, as embodied in agent
architectures, is proactivity. In this context, by proactivity, we mean that an
agent explicitly represents its goals and at any given time can evaluate
alternative courses of action to select one (if it chooses to) to further its
pursuit of these goals. Thus, rather than waiting for some stimulus in order
to act, an agent can initiate action based on an assessment of what it could
potentially do and whether any of those options will progress it toward
meeting its objectives.

A goal-based agent uses its world model to represent projections about what
new states of the world might arise depending on alternative actions it could
take. In other words, the agent can project forward through possible
sequences of actions and formulate a plan that it anticipates will result in
achieving one or more of its goals.

Information Fusion
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More specifically, it is generally assumed that the agent’s world model
contains its beliefs. These beliefs match patterns sought for triggering
projections about states of the world that are believed possible in the future.
Furthermore, it is assumed that an agent has explicitly represented its goals
or desires, such that it can properly evaluate its alternative plans of action in
order to select one. This choice on the part of the agent results in forming an
intention to actually pursue its chosen plan of action. For the most part, a
goal-directed agent will at least remember its (recent) past intentions and
could well have a more complex representation of the intentions it has, the
reasons it has them, the conditions under which it should reconsider them,
and so on.

Agent architectures that have these components are often referred to as
Belief-Desire-Intention (BDI) architectures and are viewed as being able to
exhibit intentional behavior (Dennett 1987). A BDI agent adopts intentions,
often at an abstract level, that it then gradually refines into primitive actions
that can be executed. BDI agents continually go through a cycle that
typically involves the following steps (Rao and Georgeff 1998). First, beliefs
are revised to accord with previous beliefs and new sensory input (world
modeling and information fusion). Next, a set of options is generated (plans
are formulated or retrieved and adapted) that follow from the agent’s beliefs
and consistently extend prior desires and current intentions. Options are
pruned to a minimal set for adoption, where these options are milestones in
accomplishing current intentions. At the third step, intentions are revised for
consistency with the agent’s most up-to-date beliefs and desires. The revised
intentions (or intentions with renewed commitment) augment the agent’s
intention structure. There are now many systems and toolkits that implement
a BDI view of agency. These include:

· JACK (see http://www.agent-software.com.au),

· JAM (see http://members.home.net/marcush/IRS/index.html),

· Zeus (see http://www.btexact.com/projects/agents/zeus/).

Although desires might be inconsistent, intentions must be consistent. BDI
agents spend a lot of effort making sure that they have the right amount of
commitment to their intentions. Therefore, BDI agents are reluctant to give
up on their old intentions unless they are clearly unattainable or suboptimal
given alternatives that might now be selected. Research on intention revision
and commitments is a growing field. The research has suggested
constructing agents with specific policies toward commitments (Jennings
1993). However much of this work is empirical (Kinny and Georgeff 1991;
Jennings 1995) and further effort is required to develop a theoretical
underpinning such that these policies can be shown to be optimal in a wide
range of realistic environments.

As can be seen, one of the fundamental capabilities for a goal-based agent is
the ability to form plans. Indeed, so central to the operation of a goal-based
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agent is its means of formulating, executing, monitoring, and revising its
plans that agent architectures for goal-based agents typically revolve around
the manner in which planning and plan execution are done. Thus, in the
following, we characterize several relevant planning approaches and, by
extension, some of the alternative architectural designs for goal-based
agents. For a survey article on the more recent work in the planning field, see
(Weld 1999).

Logic-based planning has its roots deep in the AI field, dating all the way
back to some of the earliest and most influential planning work such as
STRIPS (Fikes and Nilsson 1972) and the situation calculus (McCarthy
1963). Basically, a logic-based planner represents the states of the world and
the actions that can be taken in terms of a set of propositions/predicates that
hold and can be changed. Planning then amounts to proving that a sequence
of actions must transform the world from an initial state to a state where
desired goals are satisfied. The declarative specification for states and
actions provides advantages such as ease of access and manipulation, while
the underlying logical formalism supports reasoning about the correctness
and validity of agent behavior. For example, simple mappings between
perceptions and actions have been implemented with a theorem-prover (Amir
and Maynard-Reid 1999) such that correctness can be validated, which is
important for agents operating in safety-critical domains.

However, the drawbacks of logic-based approaches have included the
challenges in dealing with dynamic knowledge and dynamic situations, and
the difficulties in keeping the computation tractable as problems scale up.
Among the attempts to extend logic-based approaches to deal with dynamic
worlds have been the high level logic-based language GoLog (Reiter 1998,
2001), and Minerva which also offers a logic programming approach to
addressing the scaling issues (Aciego et al. 1999; Leite et al. 2001). In
general, these languages start from predicate calculus and extend the logic to
include temporal elements in order to express temporal ordering of actions,
enabling the expression of procedures that involve concurrent, iterative
actions. The difficulty in developing these systems is semantic consistency.

Other recent work in logic-based planning involves the design of graph-
based algorithms (such as in GraphPlan (Blum an Furst 1997)) that change
the planning problem into a problem of proving that a consistent path can be
found in a graph. Because of the recent rapid evolution in algorithms for
solving satisfiability problems, into which these graph-based techniques can
be mapped, a powerful set of planners has recently been developed,
including Blackbox (Kautz 1998), which can formulate a logistics plan
involving 105 actions in six minutes despite a search space of 101 6 possible
states.

A variety of implementations of these types of logic-based planning systems
have been made available, including:

GraphPlan (www.cs.cmu.edu/afs/cs.cmu.edu/user/avrim/www/graphplan.html)

Logic-based
Planners



Agent Architectures and Capabilities,
continued

13

IPP (www.informatik.uni-freiburg.de/~koehler)

STAN (www.dur.ac.uk/~dcs0www/research/stanstuff/stan)

SGP (www.cs.washington.edu/research/projects/ai/www/sgp.html)

Blackbox (www.research.att.com/~kautz/blackbox/index.html)

Medic (ftp://ftp.cs.washington.edu/pub/ai/medic.tar.gz)

Heuristic planners incorporate knowledge about the particular application
domain to yield richer plans in less time. A famous precursor of heuristic
planning methods was the General Problem Solver (GPS) developed by
Newell and Simon (Newell and Simon 1963) in which the heuristic
knowledge was captured in a table that prioritized “differences” between
current and target states and suggested appropriate operations to reduce
those differences first. These heuristics led to a “means-ends” search
strategy.

Recent heuristic planning techniques are exemplified in SIPE-2 (Lee an
Wilkins 1996), a technology developed by SRI that allows tractable planning
for complex, resource-bounded problems. Quoting from the SIPE-2
homepage (http://www.ai.sri.com/~sipe/): SIPE-2 is a performance-oriented,
general-purpose software system for generating and monitoring the
execution of plans. It plans hierarchically (see below), using different levels
of abstraction, and provides formalism for describing actions as operators.
Given an arbitrary initial situation and a set of goals, SIPE-2, either
automatically or under interactive control, combines operators to generate
plans to achieve the prescribed goals in the given world.

Hierarchical planners take advantage of structure in the space of plan
operators, allowing a plan to be constructed by successively refining an
abstract plan into a detailed plan. Tracing their lineage at least as far back as
ABSTRIPS (Sacerdoti 1974) and NOAH (Sacerdoti 1977), hierarchical
planners are now predominantly equated with the so-called HTN
(Hierarchical Task Network) planning systems (Erol el at. 1994). As
mentioned above, SIPE-2 includes hierarchical planning as well; thus it can
be seen that there is not a clean division between these planner categories.

HTN planning is especially appropriate for applications where there is a rich
body of plan abstractions and hierarchical structure already in place. For
example, in military settings, it can be the case that the role of an officer is to
take a goal from a superior, formulate a plan to a particular level of detail,
and pass on sub-goals to relevant subordinates, who in turn break these
down into more concrete actions, and so on. HTN planning works this same
way, in terms of successive refinement, and thus can be a natural match to a
military setting or a setting with similar kinds of command chains. However,
if in the given domain there is not a rich hierarchy of predefined doctrine,
then HTN methods need to be augmented with other planning technologies
(such as logic-based or heuristic-based planners) that can search through
sequences of primitive operations to find previously undeveloped plans for

Heuristic Planners

Hierarchical
Planners
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unique situations. Cypress (http://www.ai.sri.com/~cypress/) is an example
of a planning system that combines both HTN planning and heuristic
planning.

Partial-Order Planners develop plans by incrementally inserting and linking
together tentative plan steps in order to span the difference between a given
initial state and a goal state. This category of planners can overlap each of
the previous categories. Like logic-based planning, partial order planners
focus on proving that the goal situation is caused by applying the (eventually
discovered) steps to the initial state of the world. Like heuristic and
hierarchical approaches, a partial-order planner is not committed to building
a plan either from the initial state forward or from the goal state backward,
but instead can work from the middle outward.

Partial-order planning technologies are available for experimentation and
prototyping
(http://www.cs.washington.edu/research/projects/ai/www/ucpop.html).

Mixed Initiative planning has been advanced as a way to combine the talents
and capabilities of people with those of software planning systems. Planning
technologies for complex application domains are increasingly turning to
this strategy. It is called mixed-initiative because, given a target problem to
plan for, the software system sometimes takes the reins and suggests aspects
of a plan, and at other times the human can take control and extend and
revise the developing plan.

Mixed-initiative, and Graphical User Interfaces that allow human
participation in planning and specification of plans, are features of some
systems and are a focus of ongoing research. Among the systems that
provide GUIs for specifying and editing plans are SIPE-2 (described above)
and the Interaction Plan Editor for TAIPE (Durfee et al. 1997). Further
discussion of interacting agent and human systems for accomplishing
complex tasks such as planning can be found in the chapter on Human-
Agent Interaction.

“Reactive planner” is something of an oxymoron, since “planner” implies
that there is some foresight going on, but “reactive” implies more of a
stimulus-response kind of behavior. These planners do a limited abstract
form of lookahead, interleaving planning and execution and postponing
planning decisions as long as possible. Therefore, these systems elaborate
abstract plans into immediate actions and wait to elaborate later plan steps
until earlier ones are taken. This of course presumes that the planner has a
sufficiently rich repertoire of plan elaboration to be able to handle a variety
of possible contexts for future plans. Thus, these planning technologies are
typically most useful when there are many ways of getting something done,
and the hard part is deciding which way will make the most sense in the
evolving context of the world.

Examples of such planning systems include the Procedural Reasoning
System and its descendents (Georgeff and Ingrand 1990; Lee et al. 1994).
Other examples include RAPS (Firby 1987) and Soar (Laird et al. 1987).

Partial-Order
Planners

Mixed Initiative
Planning and GUIs

Reactive Planners
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The last of these is somewhat different, in that it also includes possibilities
for self-adaptation, where the system can learn what worked well last time
and more quickly retrieve and do it in similar future situations. This
capability is discussed in a later section.

Utility-Maximizing Agents

As agents are placed in increasingly challenging application environments,
the ability to formulate and execute plans that are provably able to reach
goals can become impossible for a number of reasons. In this section, we
look at some of these possible reasons as well as agent architectural features
and capabilities that can be employed to address these challenges.
Subsequent sections elaborate on the challenges that environments can pose
to agents.

Sometimes it may be difficult for agents to be able to access needed
information to populate its world model. Up until now, this chapter has
assumed that an agent has information from its sensors or other means to be
able to model the current state (and possibly past states) of the world, so that
it can make decisions based on complete and accurate knowledge. What if
some information is inaccessible?

Obviously, one possible recourse is for the agent to plan additional actions
whose purpose is not to achieve its primary goal(s) but rather to achieve
subsidiary goals of having an appropriate world model. For example, an
autonomous vehicle can move to an observation point in order to gather
crucial reconnaissance data, or an agent supporting logistics operations can
send out a request-for-bids to potential commercial transport companies.
Rather than passively awaiting whatever sensor information might arrive, this
kind of agent is engaging in “active perception” to go out and get the
information it needs to make decisions (Bajczy and Liberman1988).

A particular type of active perception, specifically intended to resolve
uncertainties in whether an agent’s plan is working, is often referred to as
“monitoring” or sometimes “tracking.” In this, an agent builds
expectations about the trajectory of its environment based on its world model
and the actions it has planned to take. As it pursues those actions, therefore,
an agent knows exactly what it expects the world to be like and can explicitly
watch for the features that it considers important for the successful
completion of its plan.

At the core of some agent architectures is the idea of active perception for the
monitoring and revision of agent activities during the course of executing a
plan (instead of prior to planning). That is, as an agent pursues its plan, it
stops between actions and perceives some aspects of the environment to
decide either which alternative branch of its plan to take, or whether its plan
should be revised in some way. In some agent architectures, this “stopping
and perception” is explicitly built into its plan, while in others the
architecture implicitly requires the agent to monitor progress after every

Active Perception
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action it takes.

At one extreme is the case where, despite its uncertainty, an agent has a
sufficiently complete model of the world to be able to identify, ahead of time,
all of the conditional branches that might be required. An agent of this type
uses what is called conditional planning, where a conditional plan is
formulated before the agent begins to act, and then the agent decides which
of the branching alternative subplans to pursue as it gets to a choice point
and can reconnoiter.

At the other extreme is the approach called plan monitoring and replanning,
where either an agent does not assume that it can predict possible plan
deviations, or the space of deviations is too large to consider all of them. In
such cases, an agent builds a single plan, based on its best guess as to the
course of future events, and executes this plan. However, it monitors the
environment against the projections of its world model and detects deviations
from expectations. Because it had not planned ahead for these, if they are
detected the agent halts its execution at this point, and formulates another
plan that fits the new situation. This new plan might simply repair the
previous plan by inserting actions to get it back “on track,” or it might
formulate an entirely new plan from scratch, depending on the cost of
planning and the significance of the deviation.

In many cases, despite all of its efforts to form a sufficiently complete and
accurate world model in time for when it must make decisions, an agent will
not be able to eliminate all uncertainty. There might be features of the
environment that, despite engaging all get resources, cannot be perceived.
That is, there might be features that are inherently inaccessible; for example,
an advanced command post would love to have a complete and accurate
model of the enemy’s plans, but unless some incredibly fortuitous event
occurs, it will not have such a model (at least not before those plans are
executed).

Moreover, even what the agent knows about its plans and the plans of others
might involve uncertainty. Some actions, because of inherent randomness or
to complexities that cannot be fully fleshed out, are non-deterministic. An
agent might be able to enumerate possible outcomes of its actions, but it
cannot provably claim that any particular outcome will be reached.

When operating in applications with inaccessibility and non-determinism, an
agent needs a world model that is amenable to being revised as information
changes, and one that is able to represent the inherent uncertainties. For
example, a traditional logic-based world model stores sentences that are
considered true, and thus is not amenable to handling cases where sentences
might, upon further discoveries, toggle from true to false. Efforts to extend
logical world models to handle these kinds of changes have included work in
non-monotonic logics, truth maintenance systems, default logics, and
circumscription reasoning (Cadoli and Schaerf 1993; Forbus and deKleer
1993; McCarthy 1980).

Alternatively, rather than maintaining a world model where assertions about

Uncertainty
Management
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the world are considered categorically true (until proven otherwise), the
assertions themselves can be annotated with a measure of how certain the
agent currently is of the truth of the assertion. Most often, this measure is in
the form of a probability. Substantial work in AI (and elsewhere) has been
directed at developing practical mechanisms for representing and
propagating probabilistic information in agent world models (Pearl 1988).

One such way that has found increasing use is to represent a world model
(or at least that portion of the world model that involves uncertainty) in a
probabilistic belief network. The possible assertions about the state of the
world are linked together based on correlations between their probabilities.
Therefore, as evidence appears that changes the probability associated with
one assertion, the effects of that change can be propagated through the
network graph as needed to update the probabilities associated with other
assertions. Considerable work has gone into the development of efficient
algorithms for performing these updates (algorithms for polytree networks
(Dodier 1999) or existing tools like JavaBayes (http://www-
2.cs.cmu.edu/~javabayes/index.html)).

Commonly, uncertainty might is handled by Bayesian decision theory and
non-monotonic logics [Gabbay, 1994]. Bayesian networks are based on
independence of probabilities among causes of circumstances.
Dependencies are built by directed acyclic graphs that links causes and
events. If two branches culminate at a node, the immediate nodes from the
two terminating edges are independent causes. There are many
nonmonotonic systems and by and large they allow the reasoning system to
make conclusions that are in some way non-incremental [Brewka, 2001].
Defeasible logic is one such example. The idea here is that conclusions are
accepted until contradictory information erodes our confidence in defeasible
drawn conclusions. Both Bayesian methods as well as nonmonotonic logics
have been used extensively and continue to be important in military domains
where uncertainty is commonplace. Architecturally, methods for handling
uncertainty must be incorporate din the world model.

As planning technologies have increasingly been applied in these kinds of
complex domains where unpredictable changes and uncertain events can
occur, planning systems that capture probabilistic models of uncertainty and
develop plans that maximize the probability of success over the space of
possible world evolutions have been devised. These are the so-called
probabilistic planners, such as Buridan (http://www.cs.washington.edu/
research/projects/ai/www/bur.html). For the most part, probabilistic planners
focus on a subset of issues that are addressed using Markov Decision
Process models, described below, and thus we do not go into further detail
here.

On top of the challenges mentioned about inaccessibility and non-
determinism, two more crucial challenges must be faced in most non-trivial
applications. One of these is simply that goals can sometimes be
unattainable. In most realistic problems, developing a plan that accomplishes
absolutely everything desired is impossible. Instead, an agent must be able to
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consider what can be accomplished, and select from among the alternatives
the best one. Thus, as we progress up towards more sophisticated agents, we
introduce the notion that an agent’s desires are represented more richly than
simply a goal that is either achieved or is not. Instead outcomes are
characterized as preferences, which can be achieved to different degrees.
Generally, for an agent of this type, we assume that it has some function that
can assign a numerical utility to a situation, representing the degree to which
that situation satisfies the agent’s preferences.

The second crucial challenge is that executing plans usually incurs cost.
Thus, given two plans that reach the same state of the world (and thus
achieve the same utility), an agent will prefer executing the plan that involves
the lowest cost.

Putting these together with the notions of inaccessibility and non-
determinism, the agent faces a daunting task: it must decide among
alternative plans of action to select the plan that it expects (probabilistically)
will lead to the best outcome, based both on the utility of the states that will
be reached and the costs of the actions that are needed to reach those states.

Adopting a “plan-then-execute” approach, this amounts to choosing a
single sequence of actions. For each candidate sequence of actions, the agent
can project forward using its models of uncertainty to identify all of the
possible states that can be reached, their utilities, and the probabilities of
reaching each of them. The agent can multiply the utility of each outcome by
the probability of that outcome arising, and sum these together. From this
sum, it can subtract the anticipated cost of the plan, to compute the overall
expected utility (von Neumann and Morgenstern 1947; DesJardins 1995) of
the plan.

Taken another step, however, the notions of conditional planning can also be
introduced, where instead of planning a sequence of actions to be taken
blindly, the agent can instead build a conditional plan that specifies different
actions depending on which states are actually reached during execution.
This is the fundamental idea behind the formation of a policy using a
Markov Decision Process (MDP). The MDP (Boutilier et al. 1999)
associates with each state that the environment might reach the optimal action
to take from that state (assuming that its planned optimal actions are taken in
all subsequent states). Techniques such as value-iteration and policy-
iteration have been developed for MDPs to make the computation that it
takes to do this practical.

Even MDPs do not address the whole story, however. Agents might not be
able to observe enough to know exactly what state they are in at each step, so
techniques for reasoning about uncertainty and active perception need to be
considered for Partially Observable MDPs  (POMDPs).
(http://www.cs.duke.edu/~mlittman/topics/pomdp-page.html). (Kaebling et
al 98, Berstein et al 2000, Pynadath and Tambe 2002). Furthermore, MDPs,
as their name implies, make the Markovian assumption that the action to take
in a state is independent of how that state was reached. When the history of
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states or actions leading up to a state does impact the decision of an agent,
then the problem becomes much harder, requiring the expansion of the space
of states to capture (in any of a number of ways) the relevant additional
information, typically leading to a combinatorial explosion in the size of the
policy computation.

Finally, it should be noted that, once a policy is formulated, it could be
embedded in an agent that simply matches its current state with the
prescribed action: a reactive agent (Schoppers 1987). This potential
decoupling between an agent (or an agent component) that is simply reactive,
and another that configures that reactive agent (component), is a theme that
recurs as we shall see.

Self-Aware Agents

We now move onto the case where agent architectures need to operate in
situations in which resource limitations and time criticality issues come to
the fore. Up until now we have not been placing any constraints on how long
an agent has in order to decide what it will do next. Naturally, as we have
moved up our progression of agents to those that look farther into the future
and consider alternative (probabilistic) futures and try to reason about all of
them, the time that an agent takes to decide what to do increases dramatically.
This is fine if the environment it is acting in will wait for the agent to make
up its mind. However, in the kinds of applications considered in this report,
that will seldom be the case.

An agent will view its environment as dynamic when the environment can
change at times other than when the agent is taking an action. In particular,
while an agent is deciding what it should do, another agent (whether friend
or adversary) could be acting and changing the environment. Either our
agent should anticipate these changes and form a plan that begins with the
anticipated state, or it should try to plan faster so that the state in what it
executes its plan is as close as possible to the state it had planned for.

A related challenge that an agent might face is that not only might it have
limited time, but it also might have limited resources for formulating and/or
executing plans. Employing a planning technique that it has insufficient
resources to complete, or formulating a plan that is beyond its ability to
execute, will not gain an agent anything.

In simple terms, once an agent faces time and resource limits, it becomes
important for the agent to incorporate into its architecture the ability to model
its own capabilities and limitations, along with modeling the external
environment. The paradox is that this increased awareness on the part of the
agent further increases the number of things the agent needs to reason
about! That is, not only must an agent reason about how to achieve its goals,
but it must also reason about how the world might be changing and how it
should allocate its resources in order to do this reasoning.
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One answer to this challenge is to develop reasoning mechanisms that an
agent can use such that the reasoning can take a variable amount of time.
Thus the agent will trade off the quality of its decisions (such as its plans)
for the timeliness in formulating those decisions (plans). Classes of
algorithms called anytime algorithms have been developed and characterized
that permit this kind of successive improvement. By employing anytime
algorithms, an agent can respond to real-time deadlines for reasoning while
still returning an answer that is the best that time has allowed it to find (Dean
and Boddy 1988; Srinivas and Horvitz 1995).

Furthermore, a careful characterization of such algorithms can allow the
definition of performance profiles, where the “payoff” of using an
algorithm can be mapped against the time put into the algorithm (and
possibly the time/quality of algorithms used that feed results into this
algorithm). Then, given some objective, an agent can perform deliberation
scheduling to explicitly schedule its decisions about which algorithms will
execute at which times and for how long so as to maximize the overall
quality of the results within time bounds (Mouaddib and Zilberstein 1998;
Musliner and Boddy 1997; Garvey and Lesser 1993).

Meta-level agent architectures view the decision problems faced by an agent
in terms of what amounts to a ladder of decisions. An agent must decide on
an action to take. It might identify several possible candidate actions, and so
it must decide on some means of selecting one of these. However, it might
have several means for selecting one, so it needs to choose a procedure for
selecting a means. If several such procedures exist, then the decision
problem is pushed up yet again. Each of these levels represents a “meta-
level” to the problem below it, because it does not solve the lower problem,
but does solve the problem about how to decide how to solve the lower
problem.

When agents act in dynamic and uncertain environments, a meta-level
architecture can be useful because of the flexibility such an agent has in what
machinery is brought to bear when the agent faces a problem. Rather than
going through a set number of steps to reach a decision, an agent might go
through very few (if there is little or no meta-level indecision) or many, as
need dictates. Thus, for decisions that are clear-cut, the architecture can
respond quickly; for decisions that are not, the architecture will flexibly add
meta-levels to resolve the decisions.

One example of a meta-level architecture is PRS, the Procedural Reasoning
System (Georgeff et al. 1987). In PRS, an agent matches its goals against
the plans that it knows about for achieving those goals. From this matching,
it identifies a set of possible plans to pursue. If this set contains only one
element, then it can pursue that plan directly. However, if the set has multiple
elements, then the agent can pose the meta-level goal of selecting one of
these and will retrieve plans that are capable of solving this meta-level goal.
Again, if there is one choice, the agent takes it and proceeds; otherwise, it can
push the problem farther up the meta-level chain.

Anytime
deliberation

Meta-Level Agent
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A second architecture that has this character is Soar (Laird et al. 1987). Soar
behaves similarly: when it faces an impasse because it lacks knowledge to
choose one out of several options, it forms a problem space to solve the
problem of resolving the impasse. This process can occur recursively as
needed. An additional feature of Soar, however, is that once the impasse is
solved, Soar adds new rules to its knowledge base so that, in similar
situations in the future, the choice can be made directly rather than by
appealing to the meta-levels. Thus, a Soar agent can become faster at doing
tasks as it gains more experience.

Finally, it has been recognized that sometimes deeper deliberations should
be short-circuited based on broader overriding concerns. As a human
example, panic serves to cut through rationalization and lead quickly to a
decision. Emotion-based research has been gaining a foothold in the agent
community (see http://www.ai.mit.edu/people/jvelas/ebaa.html) for the
possibility it provides for bypassing chains of reasoning to protect the agent
in dangerous situations or to enable it to work with agents that have not been
beneficial in the past (Picard 1997). Emotions such as pain, pleasure, fear,
and anger are used in making quick decisions. CogAff is an example of an
agent architecture that makes use of emotions (Sloman and Logan 1999). In
our DoD scenarios, it is possible that mechanisms based on computational
equivalents of emotions will be useful for self-protection and defense or for
pro-active behavior and offense. However research in this area is still quite
immature.

The concepts of having layers of decision making, as in the meta-level
architectures just described, can be institutionalized in an agent architecture
by defining a fixed number of levels where each successive level is
responsible for looking at a “bigger” picture than the level below. That is,
lower levels act very simply and reactively, while higher levels can employ
increasing amounts of reasoning about goals, plans, and uncertainties.

The clear delineation of scope and responsibility for each layer in these
architectures can simplify the development of the agent, support
modularization, and clarify the flow of control in the system. However, from
the perspective of time-criticality, the most important advantage of this type
of architecture is that, by developing the layers appropriately, each of the
layers can be provided with its own computational resources. Thus, a reactive
layer can immediately output actions in reflex to the current situation without
waiting for higher levels to chime in. At the next higher level, more goal-
directed reasoning is simultaneously in action; while this higher level cannot
keep up with the reactive behavior in terms of specifying an external action,
its output can instead be directed towards modifying the parameters of the
reactive layer, such that the reactions can be tuned toward achieving current
goals more effectively. Even higher layers can simultaneously be operating,
influencing the goal-directed reasoning layer to, for example, change the
priorities associated with different goals based on a broader multi-agent
situation.

Examples of these kinds of architectures include AuRA (Arkin 1990),
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TouringMachines (Ferguson 1992), and Cypress (Wilkins and Meyers
1995).

An advantage of having these explicit layers with their own resources is that
a careful characterization of some of a lower (more reactive) layer can permit
guarantees about real-time behavior. That is, some minimal level of real-time
performance can be assured, and the higher layers of the architecture serve to
reconfigure the reactive component as fits the evolving needs of the
application domain. Examples of architectures that explicitly make real-time
guarantees include Musliner’s CIRCA (Musliner et al. 1995; Krebsbach
and Musliner 2001; Goldman et al. 2001) and MARINER
(http://www.teltec.dcu.ie/mariner/). However, further work is needed on how
to combine these various layers in a coherent manner such that the whole
agent can act in an appropriate and predictable manner.

At a more conceptual level, Russell and Subramanian (1995) have looked at
the problem of agent design as fundamentally a problem of generating
executable computer programs. They break from the “gold standard” of
evaluating an agent against some measure of rationality, such as whether it
always provably achieves its goals or always maximizes its expected utility.
Instead, the claim is that the best an agent designer can do is implement an
agent that is optimal given the constraints of the language for describing
agents and the limitations of the machine on which an agent executes.

Termed bounded optimality, this approach emphasizes being able to prove
that, of all of the agents that could have been built, the agent that has been
built is the best there is. Notice that this does not claim that the agent is
perfect, or even that it is always rational. The agent can make mistakes. As a
human comparison, it would be like pointing to a system of government, and
arguing that while that system does not always make the best decisions
(looking in hindsight), there are no changes to the system that would lead it
to do better consistently. Thus, given the bounds in which it has to work, the
system is optimal.

At this point, bounded optimality is a criterion for agent evaluation, rather
than a prescription for how to build agents. In general, all that we can say is
that, if we enumerate all agent programs that could run on the platform that
we have at hand, and evaluate them in turn, we should arrive at a boundedly
optimal agent. But of course, such a strategy for agent building is intractable.
In the future, a tractable means for achieving bounded optimality might be
developed, but until then we can still use bounded optimality as an
idealization to consider working towards.

Self-Modifying Agents

Finally, we briefly consider agents that have to operate in applications in
which it is not only the current state of the environment that can be uncertain,
but in addition the agent’s knowledge about how its decisions might affect
its payoffs is itself very limited. Or, because of other evolving processes in
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the environment, decisions that make sense at one time are inappropriate at
other times, and the agent needs to continuously modify its decision-making
functions.

Self-modification of agents can be done using techniques from machine
learning (http://www.aic.nrl.navy.mil/~aha/research/machine-learning.html).
Machine learning is a large field, and many of its techniques have been
applied to agent-based systems. The types of modification that are most
often considered relate to which plans are most successful in achieving a
given objective, which goals should be executed locally and which should
involve the assistance of other agents, and what is the best means for the
agent to coordinate its actions with those of others within the system. The
main machine learning technique that is used in these cases is reinforcement
learning. Reinforcement learning is particularly useful because it can be
applied online [Sun and Peterson, 2000]. In particular, it focuses on an agent
interacting with its environment. The agent learns how to optimize its choice
of actions so as to maximize its rewards from the environment. Typically, the
environment is modeled as a Markov process and the learning is an
approximation algorithm for solving Markov Decision Processes.

Fundamentally, though, there are two clearly opposing beliefs when it comes
to self-modification. First, most users of a system in which agents can
modify themselves are uneasy about this possibility; humans are used to
machines that act “mechanically” – computer programs are generally
predictable and repetitive. People are afraid that self-modifying agents open
the door to unpredictability that could prove fatal in some situations, and
thus should be avoided. At the same time, however, many users recognize
that, for complex applications where little is known about the operational
environment until that environment is entered, adaptation is absolutely
required.

This paradoxical situation needs to be resolved if agents are to be maximally
useful in complex domains. As the pyramid at the beginning of this chapter
indicates, it is possible that somewhere in a large system there will be agents
that are self-modifying. However, it is probable that, at least for the
foreseeable future, the ratio of such agents to all agents will be quite small,
so that humans can keep an eye on them. Only when such agents
demonstrate that they can be trusted to modify themselves in ways that
people approve of will they be more widely used.

Challenges

Relatively speaking, the design and development of agent architectures and
capabilities is still in its adolescence. There are a variety of ideas and
strategies that have been developed, and they have reached a level of maturity
where it is possible to construct and deploy agents. However, for the most
part, agent development has proceeded on a limited or even case-by-case
basis, because the kinds of agent capabilities, environmental factors, and user
expectations that apply can vary so dramatically from one application
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domain to another.

This situation highlights the importance of the emerging field of agent-
oriented software engineering (Jennings and Wooldridge 2000). The aim in
this endeavor is to develop principled models, techniques and tools to aid the
process of developing high quality agent-based systems. Such work is
essential if agent technology is to become part of the mainstream of software
development. One of the most active lines of research in this area is in the
development of methodologies for the analysis and design of agent systems.
Here there are broadly two camps. Firstly, there are those that believe that it
is best to start with standard (object-oriented) methodologies (such as UML)
and add agent specific extensions (e.g., Agent UML
(http://www.auml.org/)). Secondly, there are those that believe that these
methodologies provide an inappropriate set of abstractions and that it is best
to develop agent specific methodologies (e.g, Gaia (Wooldridge et al. 2000)
and TROPOS (http://www.cs.toronto.edu/km/tropos/)).

In addition to the general challenge of agent-oriented software engineering,
we now turn to the specific challenges that agent researchers face, in order to
reach the kinds of agent capabilities that are particularly needed for the
scenarios earlier defined.

As the most primitive, and therefore best understood, of agent types, the
challenges in reactive agents are at more of an engineering level than at a
fundamental science level. Certainly, software and hardware mechanisms for
improving the speed at which stimuli can trigger responses, as the number of
such mappings increases, continue to be important areas of study. Each time
another Boolean feature of the environment is added to be monitored, the
number of mappings doubles, so that a reactive agent architecture must scale
to mapping spaces that grow exponentially with the sensing capabilities of
the agent. Furthermore, being able to make assurances about the timing and
correctness of the mapping poses challenges be able to verify and validate
that a reactive agent will indeed meet the demands placed on it by the
variability of its environment and the expectations of its designer. Finally,
work is needed on the methodological level to ensure such agents can be
designed and built to provide reliable behavior — presently such engineering
is completely ad hoc.

Maintaining and managing a world model introduces challenges that have,
for the most part, been actively studied but not yet fully solved. Aside from
the challenges in information fusion (discussed shortly), there are significant
challenges in developing appropriate languages for modeling the world and
developing suitable data structures for storing the sentences in those
languages used to capture a particular world model. The development of
languages goes hand-in-hand with the development of ontologies, which to
date has been a process more resembling an art than an engineering science.
N u m e r o u s  o n t o l o g i e s  h a v e  b e e n  proposed
(http://www.daml.org/ontologies/), along with languages for general-purpose
world modeling (Hayes and Menzel 2001). It remains a challenge to
formulate a world modeling language and strategy that is both general-
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purpose and efficient, such that it could be widely adopted to both reduce the
development time of agent systems and improve the likelihood of semantic
interoperability (see chapter on that topic).

Goal-based agents perform planning, and planning is in general daunting
problem. Most research in planning has focused on developing strategies to
overcome the difficulties in tractability, but typically this just shifts the
problem elsewhere. For example, hierarchical planning incorporates more
knowledge to simplify planning by relating detailed plans with the more
abstract plans that they can make concrete; even so, however, hierarchical
planners still have to make choices about which abstract plans to refine and
which refinement to choose, which collectively comprises yet another
exponential search space. For this reason, hierarchical planners have been
augmented with heuristic strategies for making these choices (Tsuneto et al.
1998, Clement and Durfee 1999). Other planning techniques have faced
similar problems, sometimes devising solutions that finesse the problem with
heuristics, and at other times (such as with planners like GraphPlan
(http://www-2.cs.cmu.edu/~avrim/graphplan.html)) taking advantage of
available computing machinery (such as rapid constraint solvers) to power
through problems.

Besides the challenges remaining in improving planning technologies,
however, the agent community faces broader challenges in improving
planning agents. Planning agents do not plan for the sake of planning, but
rather, plan in order to decide what to do next. In this context, sometimes
there is no good choice, and a challenge facing the designers of proactive
agents is to devise means by which those agents can decide whether the plan
is promising enough to continue pursuing.

If a proactive agent can determine when it has reached the limits of its
capability, it can choose to enlist the aid of humans in a mixed-initiative
manner, but in general it is hard to build an agent architecture that supports
this kind of self-assessment. Moreover, even when not reflecting on its own
limitations, if a planning agent is willing to question previous decisions, how
often should it do so, and how much of its efforts should it put into such
questioning versus just pushing ahead (Kinny and Georgeff 1991; Pollack
1995)? Clearly, if goal-based agent technologies are to be depended on for
applications such as command posts and logistics planning, these challenges
will need to be met in a principled way.

Finally, a proactive agent, capable of modeling plans, could be working in
tandem with a warfighter and needs to model the warfighter’s plans to
monitor the pursuit of those plans. This kind of monitoring is crucial to an
agent’s role of working behind the scenes to collect, process, and present to
the warfighter the right information at the right time in order to address the
questions the warfighter needs answered. Another challenge, then, is in
devising tasking and planning languages that permit the seamless sharing of
plan information between human and computational agents and that support
the generation and sharing of justifications for decisions and
recommendations from the agent to the human.

Intentional Agents



Agent Architectures and Capabilities,
continued

26

As proactive agents are pushed into domains where uncertainty is high and
goals may only be achievable to some matter of degree, the challenges
become even more daunting. Agents need to extend their world modeling
techniques to represent and manipulate data about the world (and inferences
based on such data) in principled yet practical ways. Tractability generally
requires some compromise of accuracy and acceptance of approximations
that call into question an agent’s ability to make optimal decisions. Data
collected over time needs to be represented and used without creating
indefinitely large world models (such as temporally-extended belief
networks). Probabilistic networks must extend into spatial domains,
particularly for mobile operations where partial (spatially-restricted)
observability of the environment will come to the fore.

The impact of knowledge, or lack thereof, can be explicitly reasoned about,
and therefore can provide input to decisions about active sensing. But in
general there are too many possible observations to compute the value of
each possibility at every step of the way. A challenge is in focusing such
decisions, perhaps by connecting up the process of improving the world
model with the planning activities to direct sensors toward data that most
impact decisions.

In the context of supporting the activities of a warfighter, an expected-utility-
based agent must be able to faithfully represent the preferences that the
warfighter intends it to follow, and elicitation of preference information can
be a complicated matter (D’Ambrosio 1996 ). Similarly, accurate
computations of probabilities associated with possible future states of the
world require faithful representations of the probabilities of the kinds of
events that might occur beyond the agent’s control in the environment.
Eliciting concise and correct models of these events is complicated by the
interdependencies between events.
In summary, expected-utility-based agents face challenges both from without
and within. From without, these agents need information that, for all but the
most contrived or circumscribed applications, might be hard to acquire and
validate definitively. From within, these agents then face often intractable
computation to use whatever information they do get. Along with other
challenges, these two will likely keep agent researchers busy for the
foreseeable future.

Resource-limited agents, especially those operating in time-critical
applications, face an unenviable challenge. The combination of resource
limitations and time criticality makes it crucial that such an agent be
extremely smart about how it spends its resources and its time. On the other
hand, being smart means, in part, spending resources and time to decide on
how to spend resources and time. To avoid spending too much time on this
decision, an agent might also spend yet more of its resources and time
deciding how much resources and time it can afford to spend on deciding
how best to apply its resources and time to solving the initial problem!

It seems likely that there is no magic bullet for solving such problems;
instead, such agents might have to make approximate decisions for the sake
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of keeping time and resource usages in check. In fact, it is most likely to be
the case that, for such agents, “optimal” will need to be replaced by
“satisfactory” as a measure of performance. The use of layering
architectures, or meta-level architectures that can “short-circuit” long chains
of reasoning to rapidly implement stop-gap reactions is one way in which
these issues are being addressed.

Making decisions, whether optimal or not, about tradeoffs among alternative
places where time and resources can be spent requires the agent to have
models of how well it can expect to do on some computational or external
task as a function of the resources/time it invests. Such profiles have been
developed for some classes of tasks, but in general addressing tradeoffs and
efficiency is hard to do short of running a procedure in the laboratory many
times and collecting statistics – which still might not match the conditions
the agent faces in the real world. Thus, the agent might also need to reason
about (and therefore devote resources and time to reasoning about!) the
degree to which its current situation matches the conditions for which it was
devised, and call for assistance when it is out of its depth (see discussion of
adjustable autonomy, for example, in the chapter on Agent/Human
Interaction).

As was mentioned earlier, self-modification tends to be an agent attribute that
most people acknowledge as likely to be necessary, yet people often are
wary about machines that can change themselves. The first challenge in
developing self-modifying agents, therefore, is in coming up with clear
criteria under which such agents should be deployed, that they are only used
when there are no simpler options. Alternatively, an agent can be highly
constrained in what parts of itself can be self-modified; for example, a
layered agent architecture might only be able to modify its own reactive layer
(Musliner 1993).

When the use of self-modifying agents is unavoidable, the agents should be
crafted carefully, and at least initially their architecture should support
interaction with the warfighter to explain what self-modifications have been
made and why. This will be challenging in itself; many machine learning
algorithms, often resulting in agents self-modification, involve subtle and
intricate calculations and underlying biases that could make such
explanations to the warfighter (who is not expected to be a computer
scientist) non-trivial.

Yet another challenge will be on an agent evaluating its own self-
modifications. When an agent changes itself, it should monitor its behavior
to see whether that change was indeed for the better, and revert to a previous
incarnation of itself if it in fact has not improved. But it is unclear how often
an agent should consider a self-modification, how long it should test a
change before deciding whether or not to keep it, and, indeed, even what it
should compare its performance with in order to evaluate the impact of a
change.

Self-Modifying
Agents
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Conclusion

There are many different kinds of agents, from simple reactive ones to
sophisticated ones that need to deal explicitly with highly demanding
environments. Each type of architecture has certain characteristics and with
these characteristics come a number of advantages and disadvantages in
particular types of environment. The mapping between these characteristics
and the nature of the target application environment is what should define the
choice of architecture for a particular application. Generally speaking,
however, as we work up the ladder of sophistication in agents there is both
more promise in what we can expect and more pitfalls in what could go
wrong (Wooldridge and Jennings 1998). For the types of agent applications
of interest in this document, it is likely that the populations of interacting
agents may need to span a variety of types.

At all levels of agent complexity, challenges remain. These range from issues
of engineering and verification, all the way up to fundamental questions
about agent capabilities that require breakthroughs before substantial
headway can be made. While a reasonably complete treatment has been
attempted in the context of the scenarios in this chapter, it is important to
note that this discussion has only touched superficially on the state of the art
and the remaining challenges. Longer treatments (indeed textbooks like
those of Russell and Norvig (1995), and of Wooldridge (1999)) can provide
the interested reader with a much deeper appreciation of the potential of
agents and the obstacles in the way to reaching that potential.
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Risks
Depending on agents, just like depending on any software or hardware
machinery, involves risk. At the agent capability level, the risk is that an agent
that is purported to have particular capabilities (planning, information fusion,
etc.) is in fact not competent in its operational environment of doing what it
was supposed to be able to do. Or, probably more likely, the expectations
that a user has of what the capability entails differ from the underlying
semantics of the agent’s capability. This is especially the case given the
anthropomorphic ways in which agents and agent capabilities are often
describes (Wooldridge and Jennings 1998). In either of these cases,
however, there is a mismatch of expectations. For mission-critical agent
systems, such mismatches can be catastrophic, as important tasks are not
done right or fully.

This kind of risk can be mitigated through careful definition and design of
the capability, including its iterative testing of the by users of the capability.
However, thorough definition, design, and testing can be time-consuming.
Thus until more formal verification techniques are developed for agent
capabilities, some residual uncertainty in performance is likely to persist.

At the agent architecture level, it could be that all of the component
capabilities of the agent work correctly in isolation, but when joined together
in the agent architecture they fail to work seamlessly. An architecture makes
certain commitments to the relationships and flow of control between
capabilities—for example, how perception and world modeling relate to plan
formation and execution, or how the amount of planning for goals is
balanced against the costs of using time or other resources. Thus, to fit
within an architecture, capabilities must meet the expectations of the
architecture. An architecture assuming real-time replanning based on
monitoring plan execution might depend, for example, on an “anytime”
planning component that can return an approximate plan quickly and can
improve upon that plan as time allows. To this end, work is needed on
models and methods for dealing with capability composition.

As we work our way up the agent pyramid, from reactive, to proactive, to
resource-limited, to self-modifying agents, the complexity of the architecture
increases. This, in turn, means that the difficulties of developing clear
definitions of agent capabilities and their interfaces grow. A risk in using
agents for the applications described in this document is that those
applications, intentionally, push on the state of the art. Thus we are forced to
use more sophisticated architectures, which are less well understood. The
challenge to the research community, therefore, is to increase the
understanding at least as fast as development and deployment demands.

Finally, the agent architectures and capabilities will be realized in systems
that work in human organizations, supporting warfighters. The risks
involved in the adoption of these technologies are great, and are discussed
and are discussed in the chapter on Human-Agent Interaction.



Agent Architectures and Capabilities,
continued

37

Forecast



Agent Architectures and Capabilities,
continued

38

Technology
element

Near term
2 0 0 1 - 2 0 0 3

 Midterm
2 0 0 4 - 2 0 0 6

Long term
2 0 0 7 - 2 0 1 0

Core Agent Technologies
Reactive Agents

State-Based Agents

Goal-Based Agents

Expected Utility-
Based Agents

Improvements in
scale/speed of
techniques for mapping
percepts to actions

Ontology-building tools
continue to improve

Faster planning
techniques for larger
scale problems in more
dynamic domains.

Refinement of ideas in
temporally-extended
belief networks

Active sensing in MDPs
Belief revision about

environmental
characteristics

Initial use of Partially
observable markov-
decision processes
(POMDPs) as a basis for
agent architectures

Verification and
Validation techniques

New standards for world
modeling languages
proposed

Principles emerge for
optimal commitment
reconsideration

Clear principles for
determining when to
engage in active
perception and when to
replan
Innovations in spatial

belief networks
Improved tractability for

partially-observable
MDPs

Automated preference
elicitation offline

Efficient algorithms for
POMDPs

Methodologies and tools
for systematically
designing and building
reliable behaviour

Efficient techniques for
fusing multiple types of
information of varying
degrees of uncertainty
from multiple sources

Tools for easily modeling
and monitoring human
plans
Models for knowing

when the agent should
pass the initiative to
the human and when it
should claim the
initiative from the
human

Approximate algorithms
for scaling belief
networks to very large
sizes
Automated preference

elicitation during
operations
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Technology
element

Near term
2 0 0 1 - 2 0 0 3

 Midterm
2 0 0 4 - 2 0 0 6

Long term
2 0 0 7 - 2 0 1 0

Core Agent Technologies

Resource-Limited
Agents

Self-Modifying
Agents

All agent types

Development of anytime
algorithms for an agent’s
action deliberation
capability
Extensions of performance

profiles to more
algorithms

Self-modification in
layered architectures

Safety and invariance
guarantees in self
modification

Well-developed
fundamental theory and
principles of agent
architectures in separate
formalisms,  BDI logics,
markov decision processes
(MDP), and partially
observable markov
decision processes
(POMDPs)

Analysis tools for agent
and multiagent
performance

Deliberation scheduling
foundation within
architecture

Computational models of
emotion to help
regulate resource use

Develop models for
combining the different
layers of the layered
architectures into a
coherent and predictable
whole

Explanation capabilities
about self modifications

Clear understanding of
the relationships
among logics and
POMDP formalisms;
and development of
new integrated theories

Development of POMDP
based formalisms for
multiagent
architectures

Fundamental
breakthroughs in
theories of distributed
POMDPs

Approximate algorithms
with principled definition
and gauarantees of
satisfactory performance
Development of
boundedly optimal
architectures

Well-defined criteria for
adopting self-
modifying agents in a
systematic fashion

Rigorous well-
developed
mathematical
understanding of
agent architectures,
multiagent
architectures

Well-established
mathematics and
science of agents and
agent architectures
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Figure 2. Agent Architecture Forecast Table (Part x of n)
Summary and Recommendations

Computational agents provide an appropriate and powerful abstraction for
working with automation that is well-suited to many types of ones, including
the military applications that recur in this document. A human operator can
delegate tasks and responsibilities to an agent, without needing a computer
professional’s grasp of how that agent works and how to “program” it. An
agent can then pursue its tasks “behind the scenes” as needed, alerting the
human at appropriate times to relevant information or recommendations of
important decisions. This model of computing is exactly what is needed to
support the warfighter and thus we believe that agent technology is
fundamental to any modern electronic warfare capability.

In this chapter, we described a progression of agent architectures and
capabilities, from simple and limited agents to more complex, versatile, and
adaptive agents. The capabilities discussed include world modeling,
information fusion, planning, active perception, probabilistic reasoning,
resource scheduling, and machine learning. In this rich landscape, an agent
architecture provides a framework for the information and control flows
between the components that provide these various capabilities. Different
architectures take different stances on the relationship between the agent, its
tasks, and its environment, ranging from agents that are assumed to know
everything about their environments and are able to deterministically move
the environment to a state that satisfies goals, to agents that have to work
with limited information in rapidly changing environments where doing well
enough (and fast enough) is all that can be hoped for.

Agents at all levels of complexity are active foci of research --- some with
reasonably short-term prospects of success, others that still require
significant scientific breakthroughs. The application domains of advanced
sensor grids, unmanned autonomous systems, advanced command posts,
and so on, are likely to require agents at all levels, and will push on the state
of the art because of the size, complexity, and time criticality of these
applications. In this context, the challenges that agent researchers face
include:

• Scaling up rapid reactive systems to larger percept input streams.

• Developing world-modeling languages and technologies that can work
efficiently and effectively across domains.

•  Improving planning technology to increase speed and scale to more
complex tasks.

• Integrating planning into agent architectures to recognize when the agent
is out of its depth and when the agent should reconsider whether to
continue with its current plan.

•  Managing world models for temporally and spatially extended
probabilistic information.
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• Automating the acquisition of knowledge about environmental processes
and about user preferences to form valid probabilistic projections about
future courses of events and the desirability of each of them to the
human whose interests are being represented.

• Rapid reasoning about resource allocation to competing demands on a
resource-limited agent operating in a time-critical environment.

•  Reasoning about tradeoffs and satisfactory performance for problems
where resources cannot assure optimal behavior.

• Principled adaptation to improve performance based on experience and
explicit justification for self-modifications to satisfy users.

In addition, it is critical to continue the development of fundamental theory
of agents, agent architectures and multiagent architectures. BDI logics and
partially observable markov decision processes (POMDPs) offer two
promising avenues for such theoretical development. This research may
provide rigorous foundations for agent architectures, novel analytical tools to
understand relationships among architectures, and indeed may lead to
fundmental mathematical breakthroughs of importance not only for agents,
Artificial Intelligence and Computer Science, but beyond in operations
research and other fields.
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Agent-Agent Interaction
Brief Overview
In a networked information system that includes human and computational
decision-making agents, the competence of the system depends on the
coordinated interactions among all of the different types of agents and
humans. This chapter will focus on computational techniques for supporting
effective interactions between artificial agents. The next chapter will then
focus on supporting interactions between agents and humans.

There is a wide range of agent-agent interaction technologies. The style of
interaction best suited to a particular application is largely dependent on the
ways in which agents’ goals and capabilities are related and the overall
functionality desired of the system.

In one broad class of interactions, each agent can be viewed as providing
some kind of capability or service, and the purpose of agent-agent interaction
is to form groups or teams of agents, dynamically, that can collectively
provide a functionality needed by system users. Examples of where this
need arises in the motivating scenarios include cooperative gathering and
interpretation of intelligence data to support warfighter awareness, exploiting
formations of unmanned vehicles, and collaboration between agent-based
capabilities for command and control planning (mission planning, trajectory
planning, intelligence gathering, planning, etc.) to craft battle and logistics
plans.

The technologies germane to this type of agent-agent interaction include
ubiquitous communications infrastructures, communication languages and
protocols, matchmaking and brokering, and models for contracting,
cooperative planning, and teamwork.

A second broad class of interactions is where each agent is either acting as
an independent entity or is representing an independent entity that has its
own objectives and capabilities that might interact with those of other agents.
Examples of where this arises in the motivating scenarios include
coordinated command and control in loosely-coupled (coalition) operations,
and dealing with contention over vital assets such as intelligence-gathering
capabilities or warfighter assignments.

The technologies germane to this type of agent-nt-agent interaction span a
spectrum corresponding to the attitudes between agents, ranging from
cooperative to competitive. At the cooperative extreme, where agent
acquaintances are known at compile time, are techniques for distributed
constraint satisfaction, dynamic teaming, and coalition formation. In
‘middle’ cases, where the interaction is between friendly forces that are
nevertheless competing over scarce resources, techniques can involve
organizational structuring, market-based allocation mechanisms, and

Description
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negotiation protocols. At the competitive extreme, where agent acquaintances
are discovered at run time and the agents are playing a zero sum game
(where what is good for one is bad for another), the interaction can be
conditioned by social mechanisms (voting, norms, etc.) for enforcement of
regulations.

Agent-agent interaction automates the formation, management, coordination,
and operation of agent teams that support information gathering, logistical
support, and command/control for enhancing the situation awareness and
effective performance of the warfighter. This minimizes the need for
warfighter intervention to control unmanned systems operating in missions
too dangerous, remote, or prolonged for human warfighters. Moreover, it
allows the warfighter to concentrate on tasks requiring human intellect
through the use of taskable agents that collaboratively handle routine
activities.

Because it does not include a human in the loop, agent-agent interaction runs
the risk of getting into states such as deadlock and livelock that could impact
the performance of the automated systems and indeed of the entire network.
Other risks include unforseen or “emergent” group interactions that may
adversely impact either performance or goal achievement. Agents and their
interaction mechanisms will need one or more of the following: careful
analysis, incremental introduction, and (when feasible and until trust is
established) human oversight.

There is significant near-term promise for agent-agent interaction
infrastructures that will provide a baseline for the construction of agent-
based software systems that advance the state of the art. Looking out to the
medium and longer terms, agent interaction technologies that will flexibly
support warfighter needs in more open, evolving operations are on the
horizon, but will require significant research and development effort.

Agent-agent interaction within agent-based systems permits agents to pool
their capabilities together behind the scenes to provide the user with more
comprehensive warfighting capabilities and to help detect and coordinate
interactions between independently-operating warfighter operations.
Technologies are well on the way for realizing these advantages in
circumscribed applications. To be understood well enough to be counted
upon in critical military applications, and to be versatile enough to conform
to changing circumstances, investments are needed in research that will
culminate in adaptive agent-interaction technologies, in principled methods
for characterizing and predicting the competence of multiagent systems, and
in comprehensive frameworks for dealing with distributed uncertainty in
systems where agents must decide when to act unilaterally and when to
function in teams or other organizational structures.

Relevance to the Warfighter
Agents in advanced sensor grids will interact to exchange information to
cooperatively synthesize, in a robust manner, more precise and complete

Relevance to
the Warfighter

Risks

Forecast

Summary and
Recommendations

Advanced Sensor
Grids
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understandings of the environment. They will also negotiate over competing
demands in highly-dynamic situations and coordinate over the combined
application of sensors to improve precision and reduce uncertainty. For the
warfighter, this means that the sensor grid is applying its assets in a
coordinated fashion to ensure the best feasible picture of the ongoing
operational environment.

Unmanned systems will operate in teams that must collectively achieve
mission goals as specified by human operators. The systems will interact to
share intelligence and to reactively readjust team activities to achieve
objectives in the dynamic environment. Such systems may also be able to
adjust activities without direct communication (using indirect observation and
expectations) when the situation warrants it. An unmanned system should also
make appropriate decisions when encountering other unmanned systems
whose responsibilities or objectives differ from its own. The warfighter will be
able to task these systems to pursue objectives that people should not pursue
because the missions are too dangerous, remote, prolonged, etc.

Agent technology can reduce the size of command posts and streamline
command post operations by allowing human commanders to offload
routine and more mechanical activities to automated agents. These agents, in
turn, can interact with each other to monitor, assess, deconflict, and redirect
activities occurring across the command.
Mobile operations pose significant challenges to the warfighter because of
their fluid and constantly evolving nature. A warfighter will have difficulty
knowing the relevant status of the ongoing mission as he or she undergoes
sporadic disconnections from the network and changes to positions and
relationships with other warfighters. Through the interactions between the
computational agents associated with warfighters, a warfighter can have
assistance in understanding the changing circumstances and making other
levels of command aware of the needs and progress of the distributed mission.

Coalition operations increase the possibility of coordination errors, as
different functional units in the coalition follow disparate doctrine and may
take actions that have unintended consequences on others. Associating agents
with functional or organizational units and allowing these agents to operate
“behind the scenes” to predict and avoid unintended conflicts can improve
coalition performance and help warfighters avoid incompatible actions,
including “friendly fire.”

Logistic operations are carried out by highly decentralized systems. The
scheduling and allocation of resources must be carefully coordinated so that
personnel, supplies, and support converge in the right amounts at the right
times in the right places, despite originating from various locations and
moving using different means. Effective interactions between automated
agents that support logistics means that the warfighter will only be placed in
combat situations where the other critical ingredients to success are available.

Well-defined interactions and protocols between computational agents that
comprise the information network permit the kinds of authorization,
understanding, and awareness that are necessary for detecting and thwarting
security risks, ensuring that the warfighter can depend on the information he
or she is provided. Computational agents can represent and mirror
organizational boundaries in information systems, and thus their associated

Unmanned
Autonomous
Systems

Advanced
Command Posts

Mobile Operations

Joint/Coalition
Operations

Logistics

Information
Assurance
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security policies.
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Technical Descript ion
The need for agent-agent interaction illustrated by the scenarios brings to the
forefront two related issues. One issue is concerned with the problem of
bringing together agent-based components so that they can provide some
desired overall capability as a team. In this case, agent-agent interaction
concentrates on how agents interact to advertise their capabilities, describe
their needs, negotiate the terms for working together, exchange relevant
information, build on each others results, plan and coordinate actions, and
collectively deliver a service to the user in a timely and effective manner. The
other issue looks outside of the agent team, to concentrate instead on what
happens between agents (or between teams of agents) as they continuously
and concurrently operate in a constantly changing environment, potentially
competing for resources1 and pursuing incompatible goals. In such a
context, agent-agent interaction must allow agents to resolve differences of
opinion and prioritize the accomplishment of important tasks, despite
uncertainty over the availability of resources, conflicts over objectives and the
use of resources to achieve them, lack of global knowledge, and absence of
any centralized control.

Accordingly, the technical description of agent-agent interaction can be
separated into the two main subsections in this technical description:

1. agent-agent interaction for cooperative problem solving, including
techniques for:
•  distributed task allocation (the assignment of tasks, actions, or

resources to agents);
• information sharing (ensuring that the right agents are aware of

relevant information in a timely way);
• distributed planning (generalization of the planning problem to

allow tasks to be planned and executed by multiple agents);
•  team formation (creation and dissolution of agents into

specialized teams to meet transient system requirements).
2. agent-agent interaction for self-interested agents in shared, dynamic

environments, including aspects of:
• discovery of potential conflicts and synergies (knowing enough

about other agents to anticipate interactions);
•  agreement on coordination alternatives (contracts, voting

mechanisms, organizational structures, etc.);

                                                
1 At the level of agent-agent interaction, a resource is considered to be an entity in the
system or environment that an agent can use to further its pursuit of its goals. For
example, this could be some physical object (e.g., a sensor) or another agent that can
provide a service for it. This is in contrast to the sense in which “resource” is used in the
Agent Infrastructure section, where resources are at a lower-level such as CPU cycles,
memory, and network bandwidth. The agent’s attention/processing time may in fact be
the resource that is contended for (i.e. the agent must manage its reasoning processes,
etc.).
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•  social mechanisms (trust, reputation, power, permission and
obligation);
emergent properties and legacy systems (global properties from
local computations, and seamless integration of newer, better, and
‘smarter’ agents).

Naturally, there are overlaps between these issues, but for convenience the
remainder of this section is structured along the lines above, highlighting the
state-of-the-art, current research and documented results in the topics
reviewed.

The central concern in cooperative problem solving is collective solution of
“a problem” that could not be solved by individuals acting on their own.
That is, a successful agent-based system, from the perspective of cooperative
problem solving is  more than the sum of its parts:  the competence of the
group is greater than the union of the competences of its individual
members.. Therefore, either implicitly o r  explicitly, the
performance/payoff/utility of each agent in the system is based on the
collective performance of the group. Note that there is often an underlying
assumption that the group of agents have been designed and implemented to
operate in a closed system (i.e. the agents are predisposed or programmed to
cooperate because each succeeds when the group is successful). This does
not imply that cooperative problem solving techniques are only for
cooperative or ‘benevolent’ agents. Cooperative behavior can evolve even in
highly antagonistic situations, and many of the techniques discussed here are
equally applicable even if all the agents are competitive or ‘self-interested’
agents. Cooperative problem solving imposes certain requirements on an
agent’s internal architecture, including that each agent is able to model other
agents. Using these models, an agent should be able to reason about how its
local activities could impact what other agents can or should be doing, and to
reason about how non-local activities of other agents could impact it.
Discussion of the appropriate internal agent architectural associated with
modeling an agent’s social environment is given in the section of this
document on Agent Architectures. The local reasoning about group activities,
in turn, generally gives rise to communication among agents, as they share
information about the problems they are solving, make requests of other
agents for help, coordinate the timing of problem-solving activities, etc. It is
this type of agent-agent interaction that this section focuses on.

A precursor to agents being able to communicate to solve problems is that
agents are capable of correctly understanding their communications. When
agents are developed by a variety of designers and thrown together in an
open networked environment, understanding between agents is far from
trivial. In this section on agent-agent interaction, we assume that agents
communicate using a small number of well-defined message types, such as
those defined by KQML (Finin 1997) and FIPA (Chiariglione 1987)
(please see the section on Agent Infrastructures for a discussion of these and
other communication infrastructures). Within those message types, the
message content that describes aspects of the problem being solved or of the
agents performing the problem solving will be captured using particular
ontologies. The challenges and potential solutions to handling multi-agent
systems with multiple ontologies are described in the section of this

Cooperative
Problem Solving

C ommunicat ion
Infras tructure
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document on Ontologies and Semantic Integration.

For the purposes of this section on agent-agent interaction, we assume that
problems in devising message types and content languages are outside of the
scope of this section. That is, here the focus is on determining how an agent
knows what to say, whom to say it to, and when to say it; we assume that an
agent can correctly encode what it wants to say to another, and once a
message is sent, the recipient can understand its contents.

A fundamental assumption behind cooperative problem solving is that a
“problem” being solved is beyond the capabilities of any single agent.
Instead, the overall solution requires contributions from two or more agents,
meaning that each of the cooperating agents is working on a “piece” of the
overall problem. Thus, a necessary step in cooperative problem solving is
that problems be decomposed into pieces. If these pieces can be solved
independently, then agents who are assigned these pieces need not
coordinate with each other, thereby simplifying cooperation. More often,
however, the subproblem tasks are interdependent, requiring communication
among agents assigned those tasks (see later section on Distributed
Awareness and Result Sharing).

In some application domains, problems are inherently decomposed. For
example, in an advanced sensor grid, the physical distribution of sensors
dictates what subproblems (areas to sense) each sensor is responsible for at
any given time. In other application domains, a “problem” arises at one
agent (for example, when a human user tasks that human’s representative
agent in the system with satisfying some objective). That agent needs to
determine how to decompose the overall problem into subproblems, where
the subproblems are likely to match the capabilities of other agents.

For the most part, techniques for problem decomposition have been
rudimentary, assuming that an agent somehow just “knows” how to
decompose problems properly. The representation is typically a mapping
from a problem into a (possibly ordered) conjunction of subproblems. As
agent-based systems become more advanced and the variety of agent
capabilities grows, however, it is probable that there will be multiple
decompositions possible for a given problem, leading to more complex
decision-making on the part of the decomposer. Questions will arise such
as: Which is the right decomposition for the current problem in the current
circumstances? How do alternative decompositions strike different balances
among objective criteria such as time to solution, quality of solution,
computation and communication cost, flexibility to changing system
demands, etc.? Are there new ways that the problem can be decomposed
given the new capabilities of networked agents? How does past experience
or other knowledge of the possible state of the network bias the
decomposition decisions?

Assuming that an agent has subproblem tasks that it needs help with, it
needs to find other agents to accomplish those tasks. A suitable agent for
receiving an assigned task is both capable of completing it and available. The
matching of tasks to agents is generally referred to as the “connection
problem.”

Problem
Decomposi t ion

Matching A gent s
and Tasks
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Contract Net Protocol

In an evolving, open environment, an agent cannot expect to always know the
capabilities and availabilities of all other relevant agents, and thus will need to
discover enough about these when needed to make a task assignment. The
traditional mechanism for doing this is the Contract Net Protocol (C-Net)
(Smith 1980; Davis 1983):

•  An agent with a task that it needs to get done broadcasts a task
announcement describing the task to be done, eligibility
requirements (availability and other capabilities) for accepting the
task, and a bid specification (what information is needed in a
response to the announcement).

• Upon receipt of a task announcement, a recipient agent determines
whether it is eligible to respond, and if so it sends back a bid that
conveys how well it expects to be able to perform the task.

• After collecting bids, the agent with the task (the manager) evaluates
the bids from the potential contractors, and picks one or more to
assign the task to. It sends the winning contractor(s) an award
message giving details of the task.

• A contractor sends to the manager a report message when the task is
done, with information about the completed task. It might also send
interim report messages along the way.

Using the C-Net, an agent with a task uses communication to dynamically
build up models of eligible agents based on their bids. Of course, this
assumes that agents have sufficiently similar semantics to understand
descriptions of tasks and bids. This broadcasting approach can also
introduce large communication costs and contention for bandwidth when
tasks originate at multiple places at overlapping times. Strategies for
focusing the contracting interactions attempt to reduce these costs. Another
difficulty is designing appropriate bidding strategies. What should the
response be from an agent that already has several outstanding (yet
unrewarded) bids? Contracting works well in somewhat lightly loaded
situations; in chronically overloaded situations the idea of announcing an
agent looking for a task (rather than a task itself) can be used. In dynamic
environments, systems may oscillate between task announcement and
availability announcement modes.

Matchmaking

Of course, rather than having each agent with a task dynamically develop a
limited (based on the task announcement) model of the relevant agents in the
network, the dynamic model might be captured more centrally. Technologies
for matchmaking (Sycara) take this approach. A matchmaker maintains a
dynamically-updated database recording what agents are currently on the
network and what their capabilities are. When an agent has a task that it
needs to assign, it can contact the matchmaker, which can identify which
agents have advertised capabilities that match the description of the task.
Again, this assumes sufficient standardization in languages for advertising
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agent capabilities and for describing tasks such that the “matches” found
by the matchmaker are correct. For further discussions of languages for
describing capabilities and mechanisms for matching agents, see the sections
on Agent Infrastructures and Agent Architectures. Both matchmaking and
contracting can be used together, with matchmaking used to find a set of
appropriate agents to which to direct a call for bids.

Brokering

The C-Net supports both locating agents that can potentially accomplish a
task and deciding which one(s) should be assigned the task based on what
they bid and how those bids compare. Matchmaking emphasizes locating
potential agents for accomplishing a task, though it can be augmented to
prioritize the “matches” returned to suggest better matches. Pushed even
farther, the matchmaking process could act like a broker. For example, it
could determine whether potential agents for accomplishing the task exist,
accept the task on their behalf, and then determine which agent to assign the
task to based on criteria such as load balancing, cost minimization, etc.
Various other combinations of matchmaking, brokering, and direct
contracting are possible and combinations may be more robust than any one
method alone (Decker et al. 1997)

Markets

Finally, when there are multiple similar tasks to be assigned and multiple
agents capable of performing them, then making an efficient set of
assignments can be done using market-based mechanisms. These
techniques are most commonly captured using an auction, where agents that
can supply a service and agents that need that service make (iterative) bids
until the market clears, at which time the assignments that maximize the value
(as captured in their bids) to the agents competing for tasks or services are
enacted.

In market mechanisms, therefore, the idea is that the degree to which an
agent that wants a particular agreement (for example, an agreement that
assigns a particular resource to it) is more directly captured as the amount
that each agent would be willing to pay for that agreement. The market
typically goes through multiple rounds of agents bidding on resources, and
then the resources (or the auctions associated with them) providing
information reflecting the aggregate demand. In the simplest terms, the
auction announces a price for the resource, and the agents indicate how
much they are willing to buy for that amount. As the system iterates, it
converges (under some conditions) to equilibrium where no agents change
their resource demands given the current prices.  At that point, an efficient
(an in certain cases, for example Vickrey auctions, provably optimal)
allocation of resources is achieved.

While a task-sharing strategy, exemplified in the Contract Net Protocol, can
distribute tasks to agents, it is often the case that how one agent pursues its
task should be dependent on what other agents are doing. That is, sometimes
a larger problem cannot be decomposed into completely independent

Dist ributed
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subproblems. When dependencies exist, agents need to be sufficiently aware
of the activities and partial task results of other agents in order to make the
best local decisions about activities and results to pursue.

By increasing distributed awareness and sharing results, problem solvers can
improve group performance in combinations of the following ways:

1. Confidence: Independently derived results/conclusions can be
used for corroboration, yielding a collective result that has a
higher confidence of being correct. For example, when studying
for an exam, students might separately work out an exercise and
then compare answers to increase confidence in their solutions.

2 .  Completeness: Each agent formulates results for whichever
subtasks it can (or has been contracted to) accomplish, and these
results altogether cover a more complete portion of the overall
task. For example, in distributed vehicle monitoring, a more
complete map of vehicle movements is possible when agents
share their local maps.

3. Precision: To refine its own solution, an agent needs to know
more about the solutions that others have formulated. For
example, in a concurrent engineering application, each agent
might separately come up with specifications for part of an
artifact, but by sharing these, the specifications can be further
honed to fit together more precisely.

4. Timeliness: Even if an agent could in principle solve a large task
alone, solving subtasks in parallel can yield an overall solution
faster.

Accruing the benefits of result sharing obviously means that agents need to
share results. But making this work is not easy. First of all, agents need to
know what to do with shared results: how should an agent assimilate results
shared from others in with its own results? Second, given that assimilation
might be non-trivial, that communicating large volumes of results can be
costly, and that managing many assimilated results incurs overhead, agents
should attempt to be as selective as possible about what they exchange. We
now look at these issues.

Functionally Accurate Cooperation

One style of collective problem solving has been termed functionally-
accurate (it gets the answer eventually, but with possibly many false starts)
and cooperative (it requires iterative exchange) (Lesser and Corkill 1981).
Functionally-accurate cooperation has been used extensively in distributed
problem solving for tasks such as interpretation and design, where agents
only discover the details of how their subproblem results interrelate through
tentative formulation and iterative exchange. For this method to work well,
participating agents need to treat the partial results they have formulated and
received as tentative and therefore might have to entertain and contrast
several competing partial hypotheses at once. A variety of agent architectures
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can support this need; in particular, blackboard architectures (Lesser and
Corkill 1981) have often been employed as semi-structured repositories for
storing multiple competing hypotheses.

Exchanging tentative partial solutions can impact completeness, precision,
and confidence. When agents can synthesize partial solutions into larger
(possibly still partial) solutions, more of the overall problem is covered by
the solution. When an agent uses a result from another to refine its own
solutions, precision is increased. And when an agent combines confidence
measures of two (corroborating or competing) partial solutions, the
confidence it has in the solutions changes. In general, most distributed
problem-solving systems assume similar representations of partial solutions
(and their certainty measures), making combining them straightforward,
although some researchers have considered challenges in crossing between
representations, such as combining different uncertainty measurements
(Zhang 1992).

In functionally accurate cooperation, the iterative exchange of partial results
is expected to lead, eventually, to some agent having enough information to
keep moving the overall problem solving forward. Given enough information
exchange, therefore, the overall problem will be solved. Of course, without
being tempered by some control decisions, this style of cooperative problem
solving could incur dramatic amounts of communication overhead and
wasted computation.

Distributed Constraint Satisfaction

One view of the iterative exchange of tentative solutions is as a distributed
constraint satisfaction problem (DCSP). Each agent is trying to find values
(solutions) for its variables (local subproblems) such that constraints
between variables are satisfied (the local subproblem solutions “fit”
together into a consistent global solution). It is typically assumed that agents
whose variables have constraints between them know about this relationship,
and therefore will communicate about their values with each other.

A variety of techniques for distributed constraint satisfaction have been
developed over the years, and a complete description of them all is beyond
the scope of this report (Yokoo et al. 1998; Yokoo and Ishida 1999). The
main challenges in solving a distributed constraint satisfaction problem are
ensuring termination and completeness. That is, in the most general sense,
what agents in a DCSP are doing is passing around their current proposed
assignments of values to their variables; when constraint violations between
their variables are detected, then some of them need to make different
assignments. There is thus a danger that agents will make assignments and
reassignments such that they never finish. Similarly, local decisions about
assignments and reassignments, without global oversight, could mean that
some combinations of collective assignments might never be tried. Thus the
DCSP search might be incomplete.

The solutions to these problems generally involve imposing some amount of
global structure on the distributed search. Ensuring completeness is possible
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if agents have consistent knowledge about which of them should try new
values for variables while others hold their values constant. This permits a
systematic search of the space of collective assignments, meaning both that
the search is complete and that it is possible to detect when all combinations
have been tried so that the search can terminate. At the extreme, however, this
can lead to a fully sequentialized search among the agents, eliminating any
potential benefits of parallelism among agent activities. Techniques have
been developed for increasing parallelism through asynchronous activities
on the parts of the agents, while still ensuring systematic search (Yokoo et al.
1998).

Shared Repositories and Negotiated Search

One strategy for reducing message passing is to instead concentrate tentative
partial results in a single, shared repository. The blackboard architecture
introduced above, for example, allows cooperating knowledge sources to
exchange results and build off of them by communicating through a
common, structured information space (i.e. the blackboard). This strategy
has been adopted in a variety of distributed problem-solving approaches,
including those for design applications (Lander and Lesser1993; Werkman
1992). In essence, using a shared repository can support search through
alternative designs, where agents with different design criteria can revise and
critique the alternatives. In many ways, this is a distributed constraint
satisfaction problem, but it differs from traditional formulations in a few
respects.

Two important differences are that agents are not assumed to know whose
constraints might be affected by their design choices, and agents can relax
constraints in a pinch. The first difference motivates the use of a shared
repository, since agents would not know whom to notify of their decisions
(as is assumed in typical DCSP formulations). The second difference
motivates the need for heuristics to control the distributed search, since at
any given time agents might need to choose between improving some
solutions, rejecting some solutions, or relaxing expectations (thus making
some solutions that were previously considered as rejected now acceptable).
Some of these latter concerns have been introduced into more standard
DCSP techniques to handle overconstrained problems (Hirayama and
Yokoo 2000).

Distributed Constrained Heuristic Search

Constraint satisfaction problems in distributed environments also arise due
to contention for resources. Rather than assuming a shared repository for
tentative partial solutions, a search strategy that has been gainfully employed
for distributed resource allocation problems has been to associate an
“agent” with each resource, and have that agent process the contending
demands for the resource. One form that this strategy takes is so-called
market-oriented programming (Wellman 1993), where associated with
resources are auctions that support the search for equilibrium in which
resources are allocated efficiently. Market mechanisms are discussed later.
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A second form that this strategy takes is to allow resources to compute their
aggregate demands, which the agents can then take into account as they
attack their constraint-satisfaction problem. For example, distributed
constrained heuristic search (DCHS) uses aggregate demand to inform a
heuristic search for solving a distributed constraint satisfaction problem
(Sycara et al. 1991). The idea is that the aggregate demand can identify the
more difficult contention issues, which can then be settled first. Much
useless work is thereby avoided in settling the easier issues and then
discovering that these fail to allow the hard issues to be settled. Difficulties
can arise in highly dynamic environments, making aggregate demand itself
dynamic and difficult to compute efficiently.

Organizational Structuring

When a shared repository cannot be supported or when problem-solving is
not tantamount to resource scheduling, an alternative strategy for managing
the sharing of results and convergence to collective awareness and decisions
is to exploit the task decomposition structure, to the extent that it is known.
This notion can be explicitly manifested in an organizational structure, which
defines roles, responsibilities, and preferences for the agents within a
cooperative society, and thus in turn defines control and communication
patterns between them (Carley and Lin 1995; Corkill 1982; Gasser 1999;
Ishida et al. 1992; Pattipati et al. 1998; Pattison et al. 1987; Prasad et al.
1996).2 From a global view, the organizational structure associates with each
agent the types of tasks that it can do and usually some prioritization over
the types such that an agent that currently could do any of a number of tasks
can identify the most important tasks as part of its organizational role.
Allowing prioritization allows the structure to permit overlapping
responsibilities (to increase the chances of success despite the loss of some
of the agents) while still differentiating agents based on their primary roles.

An organizational structure provides the basis for deciding who might
potentially be interested in a partial result. It also can dictate the degree to
which an agent should believe and act on (versus remain skeptical about) a
received result. For practical purposes, organizational structures are usually
implemented in terms of stored pattern-response rules: when a partial result
that matches the pattern is generated/received, then the response actions are
taken (to transmit the partial result to a particular agent, or to act on it locally,
or to decrement its importance, etc.). Note that a single partial result could
trigger multiple actions.

Communication Strategies
                                                
2 Hierarchical organizational structures are useful at description levels besides when
describing agent-agent interactions. In the Agent Infrastructure section, hierarchical
organizations support the definition of boundaries of security and control, for example,
with regard to policies for managing lower-level resources. In the other direction, in the
Agent-Human Interaction section, an organizational structure typically captures authority
and information relationships within a human organization.
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Organization structures, or similar knowledge, can provide static guidelines
about who is generally interested in what results. But this ignores timing
issues. When deciding whether to send a result, an agent really wants to
know whether the potential recipient is likely to be interested in the result
now (or soon). Sending a result that is potentially useful but that turns out to
not be at best clutters up the memory of the recipient and at worst can
distract the recipient away from the useful work that it otherwise would have
done. On the other hand, refraining from sending a result for fear of these
negative consequences can lead to delays in the pursuit of worthwhile results
and even to the failure of the system to converge on reasonable solutions at
all because some links in the solution chain were broken.

When cluttering memory is not terrible and when distracting garden paths
are short, then the communication strategy can simply be to send all partial
results. On the other hand, when it is likely that an exchange of a partial
result will lead a subset of agents into redundant exploration of a part of the
solution space, it is better to refrain, and only send a partial result when the
agent that generated it has completed everything that it can do with it locally.
Between the extremes of sending everything and sending only locally
complete results are a variety of gradations (Durfee et al. 1987), including
sending a small partial result early on (to potentially spur the recipient into
pursuing useful related results earlier).

Task Structures

Up to this point, we have made intuitive appeals to why agents might need to
communicate results. The TAEMS work of Decker and Lesser has
investigated this question much more concretely (Decker and Lesser 1995).
In their model, an agent’s local problem solving can have non-local effects
on the activity of other agents. Perhaps it is supplying a result that another
agent must have to enable its problem-solving tasks. Or the result might
facilitate the activities of the recipient, allowing it to generate better results
and/or generate results faster. The opposites of these (inhibit and hinder,
respectively) are among the other possible relationships.

By representing the problem decomposition structure explicitly and
capturing within it these kinds of task relationships, we can employ a variety
of coordination mechanisms. For example, an agent that provides an
enabling result to another can use the task structure representation to detect
this relationship and can then bias it’s processing to provide this result
earlier. In fact, it can use models of task quality versus time curves to make
commitments to the recipient as to when it will generate a result with
sufficiently high quality. In situations where there are complex networks of
non-local task interrelationships, decisions of this kind of course get more
difficult. Ultimately, relatively static organizational structures, relationships,
and communication strategies can only go so far. Going farther means that
the problem-solving agents need to monitor their current situation and follow
collective plans for how they should interact to solve their problems.
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Cooperative distributed planning could involve centralized planning for
distributed execution, distributed planning for centralized execution, or
distributed planning for distributed execution.

Plans that are to be executed in a distributed fashion can nonetheless be
formulated in a centralized manner. For example, a partial order planner can
generate plans where there need not be a strict ordering between some
actions, and in fact where those actions can be executed in parallel. A
centralized coordinator agent with such a plan can break it into separate
threads, possibly with some synchronization actions. These separate plan
pieces can be passed (using task-passing technology) to agents that can
execute them. If followed suitably, and under assumptions of correctness of
knowledge and predictability of the world, the agents operating in parallel
achieve a state of the world consistent with the goals of the plan.

Formulating a complex plan for a single execution system might require
collaboration among a variety of cooperative planning specialists, just like
generating the solution to any complex problem would. Thus, for complex
planning in fields such as manufacturing and logistics, the process of
planning could well be distributed among numerous agents, each of which
contributes pieces to the plan, until an overarching plan is created. For some
types of problems, the interactions among the planning specialists might be
through the exchange of a partially-specified plan. For example, this model
has been used in the manufacturing domain, where a general-purpose
planner has been coupled with specialist planners for geometric reasoning
and fixturing (Kambhampati et al. 1991). Similar techniques have been used
for planning in domains such as mission planning for unmanned vehicles
(Durfee et al. 1997a), for connectivity restoral plans in communication
networks (Conry et al. 1991), and for logistics planning (Wilkins and Myers
1995).

Finally, the most challenging version of distributed planning is when both
the planning process and its results are intended to be distributed. In this
case, it might be unnecessary to ever have a multi-agent plan represented in
its entirety anywhere in the system, and yet the distributed pieces of the plan
should be compatible, which at a minimum means that the agents should not
conflict with each other when executing the plans and preferably should
cooperate with each other to achieve their plans when it would be rational to
do so (e.g. when a helping agent is no worse off for its efforts), or in a
cooperative situation when the whole group would be better off

The literature on this kind of cooperative distributed planning is relatively
rich and varied. In what follows, we hit a few of the many possible
techniques that can be useful.

Plan Merging

We begin by considering the problem of having multiple agents formulate
plans for themselves as individuals and then having to ensure that their
separate plans can be executed without conflict. Assume that the assignment
of goals to agents has been done, either through task-sharing techniques or
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because of the inherent distributed nature of the application domain (such as
in advanced sensor networks). Now the challenge is to identify and resolve
potential plan interactions. This could be done by a centralized coordinating
agent that collects together these individual plans and analyzes them to
discover what sequences of actions might lead to conflicts and to modify the
plans to remove the conflicts. In general, the former problem amounts to a
reachability analysis - given a set of possible initial states and a set of action
sequences that can be executed asynchronously, enumerate all possible
states of the world that can be reached. Of these, then, find the subset of
worlds to avoid and insert constraints on the sequences to eliminate them
(Georgeff 1983).

A host of approaches to dealing with more complex forms of this problem
exist, but are beyond the scope of this treatment. We give the flavor of a few
of these to illustrate some of the possibilities. When there are uncertainties
about the time needs of tasks or of the possibility of arrival of new tasks, the
distributed scheduling problem requires mechanisms to maximize expected
performance and to make forecasts about future activities (Liu and Sycara
1996). When there might not be feasible schedules to satisfy all agents,
issues arise about how agents should decide which plans to combine to
maximize their global performance (Ephrati et al. 1995). More complex
representations of reactive plans and techniques for coordinating them based
on model-checking and Petri-net-based mechanisms have also been explored
(Kabanza 1995; Lee 1997; Seghrouchni and Haddad1996).

Iterative Plan Formation

Plan merging is a powerful technique for increasing parallelism in the
planning process as well as during execution. The synchronization and
scheduling algorithms outlined above can be carried out in centralized and
decentralized ways, where the flow is generally as follows (1) goals are
assigned to agents; (2) agents formulate local plans; (3) local plans are
exchanged and combined; (4) messaging and/or timing commitments are
imposed to resolve negative plan interactions. The parallels between this
method of planning and the task-sharing style of distributed problem-
solving should be obvious. But sometimes, local decisions are dependent on
the decisions of others; so local plans should be formulated with an eye on
the coordination issues, rather than as if the agent could work alone.

One way of tempering proposed local plans based on global constraints is to
require agents to search through larger spaces of plans rather than each
proposing a single specific plan. Thus, each agent might construct the set of
all feasible plans for accomplishing its own goals. The distributed planning
process then consists of a search through how subsets of agents’ plans can
fit together. Ephrati and Rosenschein (Ephrati and Rosenschein 1994) have
developed a plan combination search approach for doing this kind of search,
where the emphasis is on beginning with encompassing sets of possible
plans and refining these to converge on a nearly optimal subset. They avoid
commitment to sequences of actions by specifying sets of propositions that
hold as a result of action sequences instead. The agents engage in the search
by proposing, given a particular set of propositions about the world, the
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changes to that set that they each can make with a single action from their
plans. These are all considered so as to generate candidate next sets of
propositions about the world, and these candidates can be ranked using an
A* heuristic (where each agent can use its plans to estimate the cost from the
candidate to completing its own goals). The best candidate is chosen and the
process repeats until no agent wants to propose any changes (each has
accomplished its goal). Sometimes, an agent can inherently lean toward
taking actions that help others (Martial 1992; Goldman and Rosenschein
1994), concentrating on strategies that agents can use to exploit “favor
relations” among their goals, such as accomplishing a goal for another agent
while pursuing its own goal.

An alternative to this approach instead exploits the hierarchical structure of a
plan space to perform distributed hierarchical planning. By now, hierarchical
planning is well-established in the AI literature. It has substantial advantages
in that some interactions can be worked out in more abstract plan spaces,
thereby pruning away large portions of the more detailed spaces. In the
distributed planning literature, the advantages of hierarchical planning were
first investigated by Corkill. A variation on the hierarchical distributed
planning approach is to allow each agent to represent its local planned
behaviors at multiple levels of abstraction, any of which can suffice to
resolve all conflicts. In this hierarchical behavior-space search approach to
distributed planning, the outer loop of the protocol identifies a particular
level of abstraction to work with and decides whether conflicts should be
resolved at this level or passed to more detailed levels. The inner loop of the
protocol conducts what can be thought of as a distributed constraint
satisfaction search to resolve the conflicts. Because the plans at various
abstraction levels dictate the behaviors of agents to a particular degree, this
approach has been characterized as search through hierarchical behavior
space (Durfee and Montgomery 1991b).

Partial Global Planning

Partial Global Planning (Durfee 1988; Durfee and Lesser 1991a) assumes
that agents will interleave actions with planning and that in turn planning and
coordination will occur asynchronously. At any given time, an agent might
be taking an action based on its most recently updated plan, but that plan in
turn might still be in the process of being coordinated with the plans of other
agents. Partial Global Planning starts with the premise that tasks are
inherently decomposed -- or at least that they could be. An agent then
develops an understanding of what goals it is trying to achieve and what
actions it is likely to take to achieve them. Each agent thus initially
formulates its plans based on its own local view. Since most agents will be
concurrently concerned with multiple goals, local plans will most often be
uncertain, involving branches of alternative actions depending on the results
of previous actions and changes in the environmental context in carrying out
the plan. In Partial Global Planning, for example, agents proceed “bottom-
up” by taking their detailed local plans and forming abstractions of their
plans to reveal only their major plan steps that could be of interest to other
agents.
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The knowledge to guide communication of plan information is contained in
the Meta-Level Organization (MLO) (Durfee 1988, Durfee and Lesser
1991a), which specifies who needs to know the plans of a particular agent,
and who has authority to impose new plans on an agent based on having a
more global view. Local plans that can be seen as contributing to a single
partial global goal are integrated into a partial global plan, which captures the
planned concurrent activities (at the abstract plan step level) of the
individuals. By analyzing these activities, an agent that has constructed the
partial global plan can identify opportunities for improved coordination, such
as facilitating task achievement of others by performing related tasks earlier
and avoiding redundant task achievement. After reordering the major local
plan steps of the participating agents so as to yield a more coordinated plan,
interactions, in the form of communicating the results of tasks, are also
planned. By examining the partial global plan, an agent can determine when
a task will be completed by one agent that could be of interest to another
agent and can explicitly plan the communication action to transmit the result.
As local plans evolve during execution, this overall process is repeated.

As part of their work on TAEMS (described in the previous subsection on
Task Structures), Decker and Lesser developed Generalized Partial Global
Planning (GPGP) (Decker and Lesser 1995). That work built on Partial
Global Planning’s basic strategies of communicating and manipulating
abstract representations of plans and extended those strategies to a broader
class of domains and plan representations, as well as more complex
relationships between plans. Remember that the TAEMS approach explicitly
represents the structure of the agent’s underlying tasks and their
interrelationships and possible alternatives. In practice, this is typically done
as a set of annotations on top of a hierarchical task network. This
information includes task relationships that extend between the tasks of
different agents. Such “coordination relationships” between agents
represent opportunities for coordination.

In PGP, a fixed coordination mechanism is used to reorder the major local
plan steps of the participating agents and to communicate this new plan.
GPGP more flexibly views coordination mechanisms as creating and
exchanging new constraints on tasks to be used by the existing agent
scheduling component. Secondly, given any single coordination relationship,
there could be a number of possible domain-independent coordination
mechanisms. It therefore makes sense for an agent to be able to reason about
and use any of them, and to choose (or learn) the appropriate mechanisms
given the domain and the current situation. (Decker and Li 2000)

Distributed Continual Planning

The space of strategies for engaging in continual distributed planning
(distributed planning interleaved with execution) among multiple agents was
also the subject of a special issue of the AI Magazine (AI Magazine 1999).
The work of Myers (1999) concentrates on a multiagent system for planning
and execution, where the overall system forms, executes, monitors, and
repairs a single plan through the cooperative interactions of agents that are
dedicated to each of these (and other) aspects of planning. Similarly,
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desJardins and Wolverton (1999) focus on how agents which are each
experts at portions of the planning needs can work together and merge their
results to form a coherent, complex plan. Boutilier (1999) describes means
for formulating plans that maximize expected collective performance, taking
into account the execution-time capabilities of agents to communicate and
coordinate.

Other work emphasizes managing and executing plans in that are being
conducted in a multiagent environment. Pollack and Horty (1999)
concentrate on how an agent makes plans and manages commitments to
plans during execution despite changes to the environment and in the
multiagent context. Grosz and colleagues (1999), Tambe and Jung (1999),
and Durfee (1999b) take a more collective “team” perspective, studying
how agents that are supposed to be collaborating (and know they are) can
decide on responsibilities, balance the need to support team commitments
while still allowing some degree of extemporaneous execution, and formally
ensure that their individual and group intentions interweave to accomplish
their shared purpose.

Following predefined agent-agent interaction protocols as agents
individually pursue tasks presumes that the problem domain and the agents’
objectives are sufficiently stable that roles, interactions and expectations are
for the most part implicitly captured within the agents’ knowledge and
algorithms or can be discovered by comparing plans. When agents are faced
with a broader variety of tasks, then explicitly representing and reasoning
about teamwork among agents can not only support a wide range of
applications for a particular agent system, but also permit interaction with the
agent system at a more abstract (team-oriented) level.

Teamwork

The American Heritage Dictionary defines teamwork as “Cooperative effort
by members of a team to achieve a common goal.” Accordingly, research in
teamwork has focused on enabling different autonomous entities (e.g.,
software agents or robots) to work together (cooperatively) toward a
common goal. Researchers in this arena distinguish teamwork from
coordination in general, even if coordination involves simultaneous actions,
since such coordination need not be in service of a common goal and may
not be cooperative. A famous example from the literature is that two cars
driving in a convoy are essentially engaged in teamwork; but two cars in
ordinary traffic, as coordinated by traffic signals, are not considered to be a
team (Cohen and Levesque 1991).

Teamwork Theories and Models

While teamwork has been a topic of intense investigation in many different
disciplines, in this section we will focus on the research efforts in the
multiagents arena. Here, researchers have been attempting to fundamentally
understand the nature of teamwork and develop practical techniques to
rapidly construct robust agent teams. Early efforts in building specialized,
small-scale teams have led to an emerging consensus that in complex,
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uncertain environments, deriving multiagent coordination plans for tightly
intertwined activities is highly problematic. These plans are formulated for a
particular situation and  are not expected to be reused across problem
instances or domains. Thus, building teams becomes a very computation-
intensive process, as team coordination decisions have to be derived again
from scratch for each new domain. Furthermore, when agents coordinate
their specific plans based on analyses of those plans, if circumstances unfold
in unexpected ways during plan execution, it is not immediately clear to the
agents the degree of flexibility they have to adapt their plans before they
violate the previous analyses, because they lack a more general model of how
they are operating as a team.

Teamwork Theories, Joint Intentions, Shared Plans

A new approach based on developing a general teamwork model, i.e., a
general team coordination algorithm, appears to provide more promise
(Tambe 1997; Jennings 1995; Rich and Sidner 1997). Fortunately, research
in teamwork theories, such as the joint intentions theory (Cohen 1991),
SharedPlans Theory (Grosz 1996a; Grosz 1996b), and others provides a
solid foundation for building such teamwork models. Based in modal logics
of beliefs, desires and intentions, these teamwork theories prescribe
coordination behavior for agents to attempt to achieve “ideal” teamwork.
For instance, the joint intentions theory suggests that agents must jointly
commit to a team (common) goal. While joint commitment in turn implies
several conditions on agents’ mental states, one implication of such joint
commitment is that if an agent privately believes that a team goal is achieved,
unachievable or irrelevant, it must communicate with its teammates’ to let
them know that the goal has been achieved. By communicating this key
information, teammates’ do not waste effort to attain a goal that is already
known to be achieved or unachievable or irrelevant. (The theory does not
directly prescribe communication, which is a bit subtle, but we will work with
this interpretation to simplify exposition).

Teamwork Models

The teamwork theories described above have led to the creation of teamwork
models that enable agents to explicitly reason about commitments and
responsibilities in teamwork and flexibly plan their own coordination from
first principles. Furthermore, these models are domain independent and thus
they are reusable across domains, aiding rapid construction of agent teams.
A key outcome of this work is the notion of "team-oriented programming"
to enable developers to program agent teams at a high-level, while the
coordination is automatically generated at run time because of the teamwork
model. Team-oriented programming thus implies that developers need not
program in low-level coordination knowledge in building teams, as such
coordination behavior is automatically generated. One example teamwork
model is STEAM (Tambe 1997), which make operational the joint intentions
and SharedPlans theories with a public domain implementation available in
the Soar agent architecture. STEAM’s reuse has been demonstrated in
several different domains, ranging from helicopter pilot teams in battlefield
simulations to soccer playing teams (in simulation), to software agent
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assistant teams that assist researchers in their daily activities.

Identifying Teammates

While techniques for task allocation and team formation have already been
discussed, the interfaces between agents in dynamic environments are
contingent, negotiable, and dependent on certain kinds of social
relationships. What this means for agent-agent interaction is that past action
is not a determinant for future activity, requested behaviors (tasks, team roles,
etc.) are negotiated and re-negotiable, and adoption of ‘pro-attitudes’
(attitude with respect to another specific agent) may be dependent on social
relations like trust, reputation, authority, and so on.

For example, an agent that receives consistent task completion to a requested
quality of service may be inclined to ‘trust’ the providing agent more than
another. Similarly, a server that find itself over-committed and without
sufficient resources to complete all its tasks, or has to pre-emptively service a
higher-priority task, may have to select jobs to drop or delay which minimize
damage to its ‘reputation.’

Some of these interactions can be modeled as the iterated Prisoner’s
Dilemma game, as studied in Game Theory. In addition, there is a growing
body of work in the agents literature that seeks to formalize and
operationalize socio-cognitive theories of trust, autonomy and reputation in
implementable computational models. For example, in the Castelfranchi and
Falcone (1998a) socio-cognitive trust model, an agent X has a trust
disposition towards agent Y with respect to a goal g which is positive if X
has the beliefs:

•  A competence belief, i.e. a sufficient evaluation of Y’s abilities to
produce the expected result, and

• A willingness belief, that Y will actually do what X requires.

This model of trust can be embedded in a general theory of autonomy
(Castelfranchi and Falcone 1998b), giving principles and reasons for
bilateral delegation and autonomy adjustment. The practical utility of such
theories is that agent interactions can be conditioned by precise and testable
models that provide scientific foundations for teaming among autonomous
agents.

Realizing the promises of using cooperative agent-based systems in ways
that highly improve the warfighters’ capabilities requires exploiting aspects
of the current state of the art, as well as meeting new research challenges. In
this section, some of the most significant of these needs are discussed.

Distributed Situation Awareness

Proper decision-making, whether by human or computational agents,
requires sufficient awareness about what is going on. The need for sufficient
global awareness constructed through local, distributed observations arises
in many relevant applications including advanced sensor grids, unmanned
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autonomous systems, mobile operations, logistics, and coalition operations.
The current state of the art provides rudimentary capabilities in this regard,
but numerous challenges still exist.

Evolving relationships. Most research on distributed sensor networks has
assumed that the positioning of sensors relative to each other is static, so that
it is clear to a sensor which other sensor(s) to communicate with to ascertain
information about a neighboring area. In applications such as advanced
sensor grids and mobile operations, the relationships between the sensory
systems can be continuously evolving. This compounds the distributed
awareness problem, in those agents not only have to discover what is
happening in nearby areas, but they also have to discover which agents can
provide that information. This creates a higher-level problem of maintaining
sufficient awareness of changing relationships in a distributed environment.

Active awareness. In any situation, the relevant parts of the situation about
which to be aware will depend on what uncertainties are impacting the
decision making of a human or computational agent. That is, details about
the current situation that could change the actions that agents choose to take
are important to discover and propagate, while details that do not affect
decisions need not be discovered or conveyed. For applications such as
advanced command posts, distributed situation awareness should thus be
actively controlled based on the current distributed decision-making context.
Unfortunately, just as it is difficult for a decision maker to be aware of a
non-local sensor’s observations, it is hard for a sensor to know what
uncertainties are being faced by a non-local decision maker in an open,
evolving environment. A challenge is to develop techniques for “distributed
decision-making awareness” that complement techniques for distributed
situation awareness, to improve both.

Selective communication. In covert operations such as unmanned
autonomous systems and mobile operations where communication
introduces risk, or in applications where bandwidth is restricted and delays
are large such as in distributed sensor grids, the quality of distributed
situation awareness must be traded off against the costs of attaining it.
Deciding what local information is worth communicating is challenging
because its impact can only be known once others receive it. Using
awareness of (possibly evolving) agent relationships and possibly the
decisions that other agents face, an agent can make inferences about the
value of its information to others, and hence can make principled tradeoffs
between the expected benefits and costs of communicating. These decisions
are made even more complex by having to reason about whether the
information that might be communicated will already be known to a recipient
(through its local awareness or through some other communication) and
whether future sensing actions will lead to better information that will
subsume the current awareness, so the agent would be better off waiting to
send better information later.

Non-episodic domains. Since awareness supports decision making and
decisions can depend on not only the current state of the environment but
also on its history, distributed situation awareness typically maintains
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information that is time-stamped by when that information was believed to
have been current. Most research to date has focused on episodic
applications, where a distributed agent system would be faced with a task
episode, would solve (or fail to solve) that episode, and then would be
restarted from scratch for a new episode. Many realistic applications such as
advanced command posts and coalition operations are continuously running,
and when tasks are not compartmentalized into well-defined episodes, the
agents need to determine for themselves when it is safe to treat information
as obsolete and forget it. For single agents running in prolonged
environments, this is hard enough; in a distributed agent case, it is harder
because an agent will need to decide not only that old information is
irrelevant for its own future reasoning, but also for the future reasoning of
other agents.

Cooperative Action

Capability advertising. Cooperative problem solving assumes that agents
can combine their capabilities to solve problems that none can solve alone.
This presumes that each knows what it is capable of and can describe these
capabilities in ways that other agents can understand. Furthermore, as agents
become more sophisticated, and therefore more versatile in their capabilities,
each will have to decide which of its capabilities it believes it should
advertise, depending on what needs it anticipates other agents will have. An
agent will need to revise how it describes itself as its model of the role(s) it
can or should fill in the current society of agents evolves. A challenge is in
devising description languages that can be commonly understood and are
flexible enough for an agent to move among different descriptions of itself
as the needs of other agents (and perhaps its understanding of those needs)
change with time, in applications such as unmanned autonomous systems
and mobile operations.

Teamwork modeling. Similarly, when seeking agents to work with, an agent
will have a model of the nature of the cooperative endeavor, including how
each agent is expected to contribute. As the types of tasks for which
teamwork is needed expands to larger numbers of agents and mixed teams
of computational and human agents, such as in coalition operations and
logistics planning, richer models and representations of teamwork or more
complex organizational models are needed. To avoid overwhelming
knowledge-engineering efforts, a fundamental challenge will be in distilling
general principles and methods of teamwork such that these can be reused
across many domain instances, and the domain details can be automatically
incorporated into basic teamwork models. Moreover, other situations where
agents are ostensibly cooperating on shared goals but are part of separate,
larger organizations may require team models to be extended to define what
it means for larger organizations to cooperate on shared goals.

Organizational decision-making. In all but the most unforgiving of
environments, it is usually the case that the same result can be achieved
through a variety of different means. Distributed agents must therefore
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decide among alternative means for achieving their objectives, where this
decision is itself a distributed problem to solve. The decision will take into
account the uncertainties about the distributed awareness of the alternative
capabilities of the agents and the specific needs of the task domain to decide
on an appropriate team plan. The challenge is that, in a dynamic open
environment such as advanced command posts, the best decision can be
difficult to come up with within reasonable coordination costs and will
require explicitly reasoning about uncertainties in real-world domains.
Practical teamwork models are, of course, forced to address such major
shortcomings based on sound theoretical underpinnings to ensure that
acceptable teamwork decisions are made, that remote agents are aware of
these decisions and their roles in carrying them out, and that agents do not
work at cross purposes or waste effort pursuing multiple alternative methods
for achieving tasks.

Performance Competence. To count on cooperative agents to solve
problems in complex environments, the agents and their methods for
cooperation need to be amenable to analysis to verify the level of competence
that can be expected of them. Techniques for assuring competent
performance, including defining error bounds and degrees of fault tolerance
conditioned on parameterized models of the task environment have, lagged
behind the development of the protocols and heuristics for agent-agent
interaction. A challenge for the introduction of these systems into open,
dynamic, and critical operational systems like advanced command posts,
advanced sensor grids, and unmanned autonomous systems is the ability to
characterize in a formal way the capabilities and limitations of these systems
and to create robust techniques for exception handling and failure recovery.

Distributed Resource Management

Distributed global welfare functions. When viewed from the perspective of
cooperative problem solving, the emphasis is on having each of the agents
making decisions that optimally contribute to the overall functionality of the
collection of agents. That is, a system such as an advanced sensor grid or a
coalition is being evaluated by how well it behaves as a whole. A challenge is
in distributing this global evaluation function in a way that individual agents
can locally make decisions that are most likely to be what they should have
done had the global view been available. This again creates a meta-level
decision problem: determining the joint decisions of the agents is itself a
distributed problem for which sufficient shared awareness and coordinated
actions are needed in order to generate a solution.

Dynamic domains. Given a specific set of tasks to pursue and available
agents to pursue them, the exchange of information and tentative decisions
of the agents can ultimately lead to a globally efficient allocation of
resources. Unfortunately, for many applications, the dynamics of the domain
make convergence to efficient decisions about managing resources
impossible. The techniques developed to date have generally either assumed
stability or have used “greedy” mechanisms that do the best they can with
what they currently know. A challenge is in developing planning and
resource management techniques that can take a longer term view, including
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anticipating upcoming opportunities when managing resources while still
being computationally tractable for applications like logistics planning and
mobile operations.

Evolving preferences. When the demands placed on a system exceed its
resources, tradeoffs are necessary. While strategies, described earlier, have
been developed for making such tradeoffs based, for example, on economic
models, the unpredictable nature of the kinds of application domains (such
as mobile and coalition operations) for which we envision agent-based
systems means that the preferences over how tradeoffs are made can change
dramatically as circumstances unfold. A challenge, therefore, is in devising
techniques by which the (typically human) attitudes toward tradeoffs can
seamlessly percolate through the agent-based system and be manifested in
the decisions that the system makes.

The emphasis of the previous discussion on cooperative problem solving
was on how agents (and the capabilities they embody) can be marshaled to
solve a problem. We now take a step back and consider what else might be
going on while those agents are being marshaled or used. In particular, at the
same time a problem emerging in one part of the environment is causing
agents to coordinate over how to solve it, other problems can be emerging
from other parts of the environmentThe confluence of different problems
competing for attention within the system can lead, in the best case, to
situations where we observe emergent behavior, and solutions to problems
that the system was not designed to address, but, in the worst case, to
situations where no problems are being solved because of how agents are
divided up and are contending for resources.

The emphasis of this part of this section is thus on agent-agent interactions
whose purpose is to identify and handle competing demands placed on a
multi-agent system by agents that are not always inclined to cooperate. Now,
while techniques for cooperative problem solving can potentially be used,
they must be augmented to consider issues of whether the information or
commitments of other agents can be trusted, what information to share with
other agents, whether a team member will defect, and so on.When tasks emanate from multiple loci in the agent network, the concurrent
appearance of the tasks opens the door to conflicts: a task that could have
been successfully pursued in isolation interferes with other tasks over what it
is accomplishing or how  it is accomplishing it (including the agents being
recruited or resources being expended). It could also be the case that
independently-emerging tasks could share subtasks that need not be
replicated: the agents could mutually benefit (do less work) by exploiting
such synergies between their planned activities.

A challenge arises in discovering these potential conflicts and synergies. In
some cases, agents might have prior knowledge about which other agents
they better coordinate with and so focus agent-agent interactions with these
agents to ensure coordination. Alternatively, agents might have prior
knowledge about what kinds of resources or attributes about the world might
be contentious. These resources/attributes can thus act as connection points,
where agents that are concerned with these find each other through some
associated controller or broker or auction for the resource/ attribute. So long
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as this prior knowledge exists, it can bootstrap the process of discovering
conflicts and synergies.

When such prior knowledge is not available, agents need to engage in a
search to discover whether their intended activities might interact and if so
how. As with solving the connection problem, agents could potentially
broadcast information to each other, or they could work though a more
central clearinghouse that puts potentially interacting agents in touch with
each other. Either way, the challenge an agent faces is deciding what aspects
of its intended behavior it needs to share: sharing all of the relevant details
can be overwhelming in computations and in communication, but leaving out
some information might cause possible conflicts to be overlooked. A
compromise can be to provide summarizing information and to permit a
protocol that allows iterative exchanges to dig into the pertinent details
(Clement and Durfee 1999).

Once a need for coordination hasbeen identified, the next step is to generate
one or more candidate coordination solutions that resolve conflicts and
possibly take advantage of synergies. Especially in the case of self-interested
agents, it is unlikely that there is a universally acceptable coordination
solution. For example, distributed constraint satisfaction techniques can be
employed; however, unlike the cooperative case where any solution that
satisfies constraints is acceptable to all agents, self-interested agents might
have different preferences about which consistent solution should be
adopted. Similarly, coordinating scarce resources can lead to a number of
solutions where some agents wait for others to finish using a resource, but
typically agents will disagree as to who should wait for whom.

On the other hand, there might be some coordination solutions that can be
universally rejected because they are dominated by other solutions. In
particular, concepts like Pareto optimality apply here: a solution s is Pareto
optimal if there is no other solution s’ such that some agent prefers to s’ to s
and no agent prefers s to s’. In other words, a solution is Pareto optimal
unless there is another solution that someone likes better and no one likes
worse. Of course, there could be multiple Pareto optimal solutions, but the
set of such solutions is hopefully smaller than the set of all possible
solutions.

Once alternative coordination solutions have been identified, the agents need
to agree on which one to adopt. Obviously, the simplest case is when only
one alternative is identified: then, either all agents must accept it, or the
agents must accept the consequences of not being coordinated. In some
cases, it might even be the case that the process by which alternatives are
identified has been formulated such that the first possible solution found is
the one that must be accepted. Control over that process then becomes
important to self-interested agents.

Random Choice

Assuming all dominated solutions have been removed from consideration,
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one simple mechanism for selecting one to agree upon is simply to pick one
at random. If the random selection mechanism can be certified to be
unbiased, then this approach has the advantages of being fair and easily
implemented. Randomization is sometimes the most effective coordination
solution, and has, in fact been exploited for problems such as coordinating
access to a shared information channel (e.g., Ethernet).

Authority

A random selection gives all possible solutions equal likelihood of being
picked, even if some agents feel very strongly about which solution is picked
while others feel relatively indifferent. At the extreme, it could be the case
that one agent has a  preferences so overwhelming that it should have the
authority to dictate which coordination solution will be selected. Authority
structures for making coordination decisions are a tried-and-true technique
that also occurs in human organizations such as corporations and militaries.

Voting

When no agent’s preferences are overriding, then the challenge is to
aggregate the preferences of the individual agents to converge on a group
agreement. A standard way for doing this is through the use of voting
mechanisms. In the simplest case, each agent votes (once) for the alternative
it prefers, and the choice with the plurality of votes is selected. Of course,
simple voting schemes like this are notorious for yielding suboptimal
outcomes because they are susceptible to issues like the impact of irrelevant
choices. Arrow’s Impossibility Theorem proves that, even when agents
reveal their preferences truthfully, there is no mechanism that can ensure an
efficient outcome where no agent has dictatorial power (Arrow 1963,
Sandholm 1999).

Reaching agreement becomes even more challenging if agents can choose to
lie about their preferences, such as how much better one option is for them
than another. A variety of ideas have been developed to encourage truthful
revelation of preferences, such as taxing individuals based on how strongly
they preferred an agreement that was in fact reached. In that case, an agent
should not exaggerate its preferences, or else, if it gets its way, it will lose
more in taxes than it really will gain. On the other hand, understating its
preferences can lead to it not getting its preferred choice at all.
Unfortunately, even these kinds of techniques are susceptible to being
abused, especially when some agents work together to foil them.

Market Mechanisms

A conceptually simple way of ensuring that agreements are reached that
strike a good balance is to adopt economic models such that an agent has to
“put its money where its mouth is.” There is burgeoning literature on
market-oriented mechanisms (Wellman 1993; Sandholm 1999); the basic
ideas were previously described.
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So far, this survey of the state of the art has emphasized cases where
coordination over interactions can be done prior to the agents acting in their
environment. In many cases, the above techniques can be interleaved with
execution, where ongoing agent activities are punctuated with periods of
planning and coordination. However, in extremely open and fast-paced
domains, this might not be possible.

One way to address such domains is to formulate policies that restrict agent
activities to ensure some minimal degree of coordination no matter how their
individual plans and activities evolve. An example of this approach is the
work on social laws (Shoham and Tennenholtz 1992; Tennenholtz 1995).
By analyzing the domain to determine states that must be avoided and their
precursor states, techniques for devising social laws generate prohibitions on
the actions of agents in those precursor states to ensure that undesirable
states are never reached. If each agent incorporates the laws into its decision
mechanisms, then a society of social-law-abiding agents is assured to be
conflict free.

At the other extreme are approaches that tolerate the possibility of mis-
coordination. Rather than bogging an agent down by forcing it to wait until
there are agreements among all agents before it can proceed, an agent can
unilaterally make decisions that it can justify in terms of past and expected
agreements. While at any given time the agents might not all be acting in a
coordinated fashion, eventually each will know enough about the past and
expected future activities of other agents to take appropriately coordinated
actions with them (Durfee and Lesser 1991a).

There are many other approaches to specifying and reasoning about
dynamic multiagent systems, and in particular systems that are subject to
unanticipated outcomes in their operation or dysfunctional behavior of their
constituents. For example, there is work from philosophy and the study of
legal systems that provides computational models of normative positions
(Sergot 2001), institutional power (Jones and Sergot 1996) (the power to
‘bring about’ a state of affairs according to some institution), and
commitments (Singh 1999). In addition, there is research that considers
agents as computer processes with ascribed mental states: a system designer
can reason about such states with use of, for example, epistemic logic (Fagin
et al. 1995; Shoham and Tennenholtz 1994; Moses and Tennenholtz 1995).
A third perspective uses computational models of organizational theory to
study collective properties such as the assignment of tasks, distribution of
knowledge, and organizational rules (Ferber and Gitknect 2000; Esteva et al.
2000; Zambonelli et al. 2001).

Elements of all three approaches can be draw together to provide a
computational framework for the specification and animation of open agent-
based systems. These involves identifying social constraints, roles, states and
structures, and an ‘institutionalized’ communication language. For the social
constraints, three levels of specification are defined:

• What kind of action count as valid actions: for example, when does a
bid in an auction protocol constitute a valid bid. Distinguishing
between valid and invalid actions facilitates the separation of
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meaningful form meaningless activities in the society;

•  What kind of action is permitted: for example, an agent may be
empowered to make bids (i.e., when it signals a bid, it counts as a
bid, as above), but may only be permitted to make bids at certain
times in a protocol. This specification of permitted, prohibited and
obliged actions allows agent behavior to be classified as legal or
illegal, ethical or unethical, social or anti-social, depending on the
society;

•  What sanction or enforcement policies there are which deal with
illegal, unethical or anti-social behavior.

More details of this framework can be found in (Artikis et al. 2002).

Using agent-based systems to coordinate the plans and resource usages of
multiple forces in a shared battle space requires extending the state of the art
along each of the fronts mentioned above.

Scaling. An important though usually implicit assumption in agent-based
systems is that each agent has some degree of autonomy, meaning that
agents are generally independent of most other agents. For example, in
coalition operations, advanced command posts, and logistics applications,
objectives and assets are divided and assigned so that how one of the many
ongoing missions is carried out impacts only a handful of other missions.
This decomposition into nearly-independent subtasks is a fundamental
strategy for scaling to large multiagent systems. While known
interdependencies can be reasoned about and coordinated, techniques are
also needed for discovering unintended interactions between agents (as an
extreme example, “friendly fire”). Rudimentary techniques for doing this
have been proposed based on analyses of abstractions of agents’ activities,
but important challenges remain in developing robust distributed
mechanisms and in exploiting built-in or dynamically-acquired knowledge to
focus and streamline these activities.

Flexible execution. It is a given that an agent will not perform well if it does
not have a plan when it enters a hostile environment and if it cannot revise its
plan as circumstances unfold, such as in mobile operations and unmanned
autonomous systems. Thus, discovering potential conflicts and synergies
must be done despite inherent uncertainty in the details of how objectives
will be met. One class of current strategies for dealing with this problem
generally takes a “worst-case” perspective by treating plans as interacting if
there is at least one possible combination of agent executions that could lead
to an interaction, even if most executions will not. The other main strategy is
to assume no interactions and then to “fix” problems when interactions do
arise. A research challenge is to populate the space of mechanisms between
these extremes to strike a more flexible balance between being overly
restrictive (coordinating just in case) and overly permissive (coordinating
only after problems arise).
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Overhead costs. Coordination introduces a variety of costs, including the
computation and communication resources that go into coordination as well
as the delays that accrue from waiting until agents are coordinated before
they concentrate on acting on their objectives. In particular, the process of
discovering conflicts and synergies can be time- and resource-intensive, with
uncertain benefits. In applications such as advanced sensor grids and mobile
operations, where communication resources are scarce and time can be of the
essence, the effort expended in discovering conflicts and synergies must be
carefully considered. Important research challenges remain in studying
principled techniques for reasoning about the tradeoffs between the costs
and the benefits of coordination reasoning. It is for just these kinds of
reasons that human organizations adopt policies or “standard operating
procedures”, although these approaches bring with them their own
problems.

Behavioral constraints. In applications such as unmanned autonomous
systems, users might want to impose adjustable constraints on autonomous
operations (see next section on Agent-Human Interactions). The constraints
imposed by the user, along with constraints associated with organizational
roles and commitments to other agents, need to factor into an agent’s
decision-making about what actions it should take in the context of actions
that other agents take. A challenge in agent-agent interaction is in deciding
how and when to use constraints on agent behaviors in a multiagent context
to focus the search for effective combinations of agent interactions without
handcuffing agents.

Complex interdependencies. Distributed decision makers must sometimes
construct alternative solutions that involve more complexity than simply
being a combination of their individual decisions. For example, in an
advanced sensor grid, a sensor that could contribute to monitoring an area
must decide whether it is worthwhile doing so: for triangulation purposes,
fewer than three sensors is insufficient, while more than three is wasteful.
Therefore, the alternative joint decisions by the relevant sensors should only
involve training three sensors on a region. However, distributed strategies for
converging on solutions typically consider only pair wise constraints, and it
is difficult to use current algorithms in a distributed manner to enforce
trinary (or higher) constraints such as those needed for triangulation in
advanced sensor grids. This is an example of the broad challenge in
developing algorithms for the distributed formation of joint decisions
involving complex constraints.

Nested modeling. To decide what its most appropriate action is, an agent
should generally consider the larger context of what actions it expects other
agents to take. When these are not explicitly communicated about (because
of limitations in communication resources or privacy issues among parties
that have self interests), such as could happen in coalition operations or in
more adversarial domains, an agent should instead model the decision-
making processes of the other agents. However, because those agents could
in turn be modeling its own decision-making processes, it needs to model
their models of itself, their models of its models of them, and so on. While
techniques have been proposed for working with finitely-nested models and
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for infinitely-nested models, substantial challenges remain in developing
principles through which the models are created and tractable algorithms for
determining which pieces of the models (which can exponentially expand at
deeper levels) are worth reasoning about.

Preference revelation. Given that agents have different preferences over the
alternative agreements, mechanisms are needed to converge on one of the
agreements. For example, in coalition operations, partners might have
different preferences over how roles are apportioned, or in advanced sensor
grids some sensors will prefer to conserve their own power by having other
sensors take responsibility for an area. One challenge that has to date only
been addressed to a limited extent is in developing means by which agents
are assured of truthfully revealing exactly how strongly they prefer each of
the alternatives.

Time-critical action. Sometimes, waiting for agreement can introduce
unacceptable delays; an agent might need to act before there is time for all
agents to reach agreement. Especially in application domains where
communication channels can become compromised, the ability to unilaterally
act prior to complete agreement can be crucial. The challenge, of course, is in
deciding when to act and when to wait. Fundamental advances are needed in
representing temporal information at both the domain and meta-level
reasoning levels, as well as weighing such tradeoffs as agents are applied in
environments such as mobile operations and unmanned autonomous
systems where convergence to commonly held agreements becomes
increasingly problematic.

Non-episodic domains. In non-episodic applications, agents will engage in a
history of making and acting upon agreements. For example, particular
carriers might be called upon multiple times during a prolonged logistics
campaign, and coalition partners might work together in a series of missions.
In these cases, the strategies for reaching agreements must account for past
agreements (including the degree to which each participant fulfilled its part
of the agreement) and for future agreements (encouraging evenhanded
dealings that lead to future positive interactions). A challenge facing the
development of agent-based systems that settle on coordination agreements
in the context of most human activities is in broadening the techniques for
reaching agreement to consider wider features of history and opportunity, as
well as custom and culture.

Flexibility and fault tolerance. When operating in highly-dynamic
environments, such as mobile operations and advanced command posts,
where new interactions can arise in the midst of ongoing interactions, agents
need the capability to forge agreements that apply across a span of possible
futures. They also need to couple these with the ability to recognize when the
evolution of the world deviates from that span, so that they can regroup. A
challenge in developing techniques for coordinating the plans and resource
usages of diverse agents is in equipping them with the ability to more
broadly understand when they are operating within the envelope where their
interactions are coordinated, and when changes to the environment or to the
population of agents themselves has thrown them outside of the envelope.
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Adaptation. Increasingly, it appears that military forces (and therefore the
computational agents that accompany them), are facing unconventional
missions for which standard doctrine does not exist. In such cases, such as
rapidly-deployed coalitions and mobile operations, it is possible that agent-
based systems will encounter situations for which they are underprepared at
times where human consultation is not possible. It is important that agents
monitor the outcomes of their decisions (even if their decisions are not to
act) so as to augment their knowledge bases so that they can make better
decisions in similar future situations. Self-adapting agents of this type hold
the promise of improving performance and overall agent-based system
capabilities over time, at the risk of having agents act in ways that are
possibly unexpected from the perspective of human operators. Substantial
challenges exist in developing agents that can adapt individually (see section
on Agent Architectures) and collectively, and on developing policies for
controlling these agent-based systems to harness the advantages of
adaptation without incurring costs due to loss of predictability.

Agent Ecosystems. A final challenge is achieving the long-term extension of
the idea of agent societies as being the synthesis of the complex information
infrastructure as it is today (internet and WWW) with agent societies into a
type of ecosystem: a rich, diverse, adaptive, and responsive environment. The
ecosystem constantly scales up or down, evolves and adapts in order to best
meet the changing demands of its vast and highly dynamic population (for
which it is not unreasonable to think of in terms of millions). The benefit
would be an environment that supports the dynamic creation of new types of
relations and activities and, in doing so, creates value and degrees of
scalability, sustainability and robustness that are well beyond what can be
accomplished today. However, it is not unreasonable to envisage advanced
Warfighter functionality in certain applications (sensor grids, logistics, etc.)
as being realized in terms of an ecosystem. Particular features of such an
ecosystem are emergent properties (aggregate or global properties arising
from local computations), and intelligent systems evolution: seamless
assimilation by newer, better, and ‘smarter’ agents of legacy functionality
(of the component they’ve replaced) and coordination of the ‘dumber’ ones.
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Risks
Reliance on automation is inherently risky because it depends on the
automated systems to behave in intended ways even when operating in
unforeseen circumstances. Agent-based systems, as an automation
framework, in some ways increase these risks because agents are typically
tasked at a more abstract level, leaving more room for unanticipated behavior.
On the other hand, because they can be tasked with achieving objectives,
agent-based systems also hold the promise of being more dependable and
less brittle since they can make sophisticated choices that are expected to be
most effective at achieving those objectives.

Achieving the promises while avoiding the pitfalls of agent-based systems,
and doing so with well-defined degrees of assurance, requires the
development of control and coordination technology for agents that are
principled and verifiable. To date, only agent systems operating in very
restricted environments and interacting through very limited protocols have
been amenable to such analyses. It is expected that as agent technology is
applied to increasingly complex problems (thus aggravating the risk), we will
also grow in our understanding of coordination techniques and our ability to
implement principled mechanisms (thus mitigating the risk). We need to
move forward on the research front at least as rapidly as we move forward
on the applications front.

An aggravating factor in agent-agent interaction, of course, is that there is no
human in the loop for these interactions. At this point, it is still generally the
case that humans are better at recognizing anomalous situations than agents
are. As a result, whereas interactions with humans cannot proceed in
counterproductive manners for long, agent-agent interactions could enter
counterproductive states such as deadlock, and livelock that might not only
render the agents themselves ineffective, but also could drag down the whole
network and possibly even introduce security risks. Most likely, these risks
will be mitigated by introducing these systems slowly with humans
supervising their activities until sufficient trust has been built up about their
operation.

There is also a risk that the choices that agents make when tradeoffs need to
be made will not reflect the preferences of the human authorities because of
incomplete or incorrect knowledge encoding. Again, human oversight is an
important mitigating strategy, as are tools for automating the development of
agents and their knowledge bases by working with experts so as to ensure
complete and correct agent knowledge.

Forecast
There are many uncertainties about the future course of progress in the
design and development of agent-agent interaction technologies. At the
present time, there is an active and vigorous community working on these
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issues, as well as substantial and growing support from the DoD and from
the commercial sector for their development. The forecasts that follow
assume that this growth trend in interest and support continues.

In addition, the forecasts presume that simultaneous progress is made on the
agent infrastructures that undergird the various kinds of interactions between
agents, such that agents can securely and understandably communicate with
one another with some well-understood and achievable levels of reliability
and timeliness. Advances in agent architectures to support advanced
reasoning about complex situations, actions, and opportunities are also
assumed.
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Technology
element

Near term
2 0 0 1 - 2 0 0 3

 Midterm
2 0 0 4 - 2 0 0 6

Long term
2 0 0 7 - 2 0 1 0

Cooperative Agent Interaction Technologies

Distributed Situation
Awareness

• Improved methods
for selectively
propagating relevant
information

• Models of roles of
other agents for
promoting awareness
based on decision
problems

• Heuristic techniques
for making
communication
tradeoff decisions

• Techniques for
domain-specific
revision of
information
relationships

• Dynamic plan-based
techniques for
decision support
information exchange

• Myopic decision
theoretic techniques
for communication
widely used

• Generic mechanisms
for representing and
updating relationship
information

• Practical mechanisms
for representing non-
local decision
problems and making
relevant commun-
ication decisions

• Sequential
communication
decision techniques
become practical

Cooperative Action • Standards for agent-
description
languages emerge

• Classes of teamwork
models for particular
operations become
characterized and
generic team
behaviors for these
defined

• Separate measures
of competence for
agent-based systems
become
systematized

• Feedback
mechanisms for
matchmaking
involving agents with
disjunctive
descriptions

• More generic
teamwork models
formulated

• Combined
competence metrics
become standardized
and adopted

• Adaptive agent
description
techniques

• Reusable teamwork
models with
automatic
instantiation for task
domains available

• Techniques for
formally evaluating
competence along
well-defined metrics
lead to high-
confidence systems

Distributed
Resource
Management

• Initial strategies for
locally approximating
global welfare
functions are devised

• Hard-coded, static
models of dynamics
support resource
management with an
eye to future
opportunities

• Human preferences
over task/resource
tradeoffs are
hardwired

• Error bounds on
decentralized global
welfare function
computations can be
calculated in limited
cases

• Dynamic updates of
anticipated future
resource needs

• Dynamic, situation-
based revision of
tradeoff preferences
over tasks/resources

• A toolbox is available
of techniques for
approximating global
performance to
different degrees at
various costs

• Decision-theoretic
methods for resource
management over
expected futures,
costs, and rewards

• Adaptive modification
of preference
tradeoffs based on
assessing outcomes
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Figure 1. Agent-Agent Forecast Table (Part 1 of 3)

Figure 1. Agent-Agent Forecast Table (Part 2 of 3)

Technology
element

Near term
2 0 0 1 - 2 0 0 3

 Midterm
2 0 0 4 - 2 0 0 6

Long term
2 0 0 7 - 2 0 1 0

Resource and Plan Coordination Technologies

Discovering Conflicts
and Synergies

• Scale-up strategies
based on predefined
partitions find wide
usage

• “Worst-case” and
“best-case-and-
recovery” techniques
for flexible execution
become more
widespread

• Overhead costs for
discovering conflicts
and synergies is
measured

• Centralized
mechanisms for
discovery of partitions

• Research into
“expected-case”
mechanisms begins
to yield fruit

• Decisions about
expected gain of
discovery and
overhead of
discovery influence
choice of use of
which, if any,
discovery mechanism

• Distributed
techniques for
discovery of partitions

• A gamut of methods
for balancing
execution-time
flexibility with
constraints
supporting
interaction are
available

• Generic methods for
trading off costs and
benefits of interaction
discovery become
widespread

Identifying
Alternatives

• Variants of constraint-
satisfaction methods
broadly adopted

• Strategies to widen
the use of binary
constraint techniques
for more complex
interactions

• Characterization of
agent modeling
techniques based on
levels of nesting

• Propagation of
constraining
information permits
focused local search

• More general n-ary
constraint algorithms
formulated

• Prescriptive theories
about appropriate
levels of modeling for
different application
needs

• Incorporation of other
contextual
information (e.g.,
organizational) into
alternatives search

• More general n-ary
techniques applied in
distributed cases

• Automated formation
and adaptation of
nested models by
executing agent
systems
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Figure 1. Agent-Agent Forecast Table (Part 3 of 3)

Technology
element

Near term
2 0 0 1 - 2 0 0 3

 Midterm
2 0 0 4 - 2 0 0 6

Long term
2 0 0 7 - 2 0 1 0

Resource and Plan Coordination Technologies

Reaching
Agreement

• Standardized
implementations of
limited truth-
revelation
mechanisms (e.g.,
Vickrey auction,
Clarke tax)

• Better-defined
heuristic methods for
deciding between
waiting for agreement
or acting unilaterally

• Agreement
mechanisms based
on single-shot
decisions

• Extensions of truth-
revelation techniques
for more widespread
usage

• Research matures
into principled
methods for trading
off rapid unilateral
action with waiting for
agreement

• Techniques based
on iterative
interactions that
factor in long-term
effects of current
decisions

• Development of
monitoring
mechanisms to
ascertain and
respond to honesty
behaviors of agents

• Well-defined
technologies for
developing agents
that can act
unilaterally or in
concert depending
on circumstances

• Adaptive agreement
methods based on
past experiences and
broader human
factors

Managing Ongoing
Agent-Agent
Interactions

• Use of predefined
feature patterns to
identify situations
outside of agents’
capabilities

• Logging of
interaction
experiences for after-
the-fact analysis and
knowledge extraction

• Norm-governed
interactions, trust and
reputation
mechanisms

• 

• Dynamic construction
of state monitoring
actions for detecting
situations outside of
agents’ capabilities

• Dynamic monitoring
of situation evolution
and action effects to
revise internal models
of actions and
interactions

• Open Agent
Societies: inter-
operation of
separately designed,
developed and
deployed
components
according to
specified rules

• 

• Generic exception
handling techniques
associated with
coordination patterns

• Adaptation of plans
and strategies based
on generalizing prior
experiences and
experimenting with
alternative doctrine in
simulated domains

• Information
Ecosystems: diverse,
adaptive components
with emergent
functionality in
robust, scalable
systems

• 



Agent-Agent Interaction, continued

38



Agent-Agent Interaction, continued

39

Summary and Recommendations
A fundamental promise of agent-based technologies is the degree to which
these technologies can provide flexible and adaptive capabilities that can be
teamed up to satisfy mission objectives. Realizing the promise requires that
adaptation be embraced within agents, between agents, and by users of
agent-based systems. While research into adaptation within agents has
continued apace, adaptation between agents has received much less attention.
Various threads of research already exist, including the development of
agents that learn what to do in the context of others’ actions, the formulation
of belief revision techniques for modeling agents and users, and the study of
mechanisms by which agents decide how to advertise their capabilities and
define the organizational roles that they should play depending on the
broader context of the society of human and computational agents with
whom they interact. These threads need to be woven together into a coherent
attack on the foundational issues of devising agent-based systems that
conform to the contexts in which they are placed rather than requiring
humans to tailor them to particular applications.

More broadly, for adaptation of agent-based systems to be embraced by the
user community, fundamental advances are needed for prescribing policies
that can control agent-agent interactions and for formally characterizing the
competence and limitations of an agent-based system within an application
task-environment. These advances will lead to the adoption of agent-based
systems, which in turn imposes added pressures on the needs for adaptation
within agent-based systems and the human organizations that use them. For
example, while an initial implementation of an agent-based system in a
military application might adhere to and even reinforce patterns of interaction
that have become standard practice, the presence of agent-based systems
holds promise for the judicious development of radically new and improved
doctrine that is made possible by these systems, which might be discovered
through adaptive mechanisms within the agent-based system and across the
pertinent military unit.

Besides concerns about adaptation and consequently about formal
competence characterization, a second key direction for more research is in
the area of dealing with uncertainty in dynamic, multiagent domains. A core
problem revolves around deciding on the balances that agents need to make
between acting as individuals and acting as part of a collective enterprise.
There are clearly times when the desires of the individual must be sacrificed
for the group, while there are other times when the needs of the group are
best met by allowing an individual the freedom to unilaterally act
opportunistically without waiting for broader agreement. Precursor research
into areas such as “adjustable autonomy” are a start in this direction, but
must be extended to look to flexible means for making these adjustments
and applied to autonomy between computational agents as well as between
humans and their associated agents.

More broadly, making decisions about whether or not to act unilaterally and
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for that matter on what the actions should be, inherently involves uncertainty.
Uncertainty can arise from limited local awareness of the current situation
and thus advances in distributed situation awareness must be attained to
reduce this source of uncertainty. Uncertainty also arises over future courses
of events, including future resource needs of other agents, future tasks that
might need to be done, future information exchanges that might occur, and
future changes to the environment that might cause some actions to fail and
others to succeed. Models of uncertainty can be incorporated into agent
reasoning techniques, but then the issue arises about how these models are
populated. In particular, agents might modify their models based on past
experience, agents might update each other’s models based on locally-
available information, and agents might bias their current and future
decisions based on the uncertainty that they have or the uncertainties that
they believe that others are facing. Given all of the sources of uncertainty
and the competing responses to uncertainty in a dynamic multiagent setting,
piecemeal solutions can emerge; the real challenge will be in developing, over
time, a more encompassing framework for systematically addressing and
resolving these problems.
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Software Agents for the Warfighter
Part  2: Technology Components

1

Human-Agent Interact ion
Brief Overview
Future battlefield environments will involve complex interaction of many
different entities, including human warfighters, decision-makers, coalition
partners and their forces, sensors and sensor grids, software agents, UAVs
and other unmanned vehicles, and all in highly dynamic, real-time
environments. Within this space of complex interaction, the previous chapter
focused on agent-agent interaction. This chapter will focus on human-agent
interaction.

The basic problem in human-agent interaction can be summarized briefly:
agents and humans are very different kinds of entities that exist in two very
different kinds of worlds. For the foreseeable future there will be a
fundamental asymmetry in their capabilities: the brightest agents will be
limited in the generality if not the depth of their inferential, adaptive, and
sensory capabilities; humans, though fallible, are functionally rich in
reasoning strategies, their powers of observation and learning, their
flexibility, and their sensitivity to context (Agnew and Brown 1989).
Adapting to appropriate mutual roles that leverage the respective strengths of
humans and agents, and crafting natural and effective modes of interaction
are the key challenges that researchers are working to overcome.

A persistent misperception about all forms of automation is the notion that
such assistance is a simple multiplier of human capability. In reality,
however, help of whatever kind does not in reality simply enhance our ability
to perform the task: it changes the nature of the task itself. As with all
automation, the introduction of agents into human work practices must be
done carefully to ensure that the cost of the coordination and monitoring
demands on the human do not exceed the value of the agent assistance
offered.

Researchers have specialized in various aspects of the human-agent
interaction problem. Some of the key components intended to help address
the challenges include:

• Teamwork: Teamwork has become the most widely-accepted
metaphor for describing the nature of agent-agent interaction.
However, human-agent teamwork must address much richer and
more complex issues than today’s agent-agent teamwork research.
Individual differences among humans and indeed differences in both
style and substance between humans and agents on nearly every
front make true teamwork among humans and agents a challenge.
Current approaches to human-agent teamwork are providing many
lessons and some encouraging directions.

Description
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• Observability and Interaction Style: Effective teamwork requires
that relevant aspects of the agents and the situation be observable at
an appropriate level of abstraction. Although this is as much a
requirement for agent-agent teamwork as it is for human-agent
teamwork, the size of the representational gulfs separating humans
from agents is much larger, and agent designers must find innovative
ways to compensate for these limitations. Beyond the content of
what team members need to know, we need to consider the form in
which this information is exchanged and various styles of humans-
agent interaction.

• Adjustable Autonomy: The goal of designing mixed-initiative
systems with adjustable autonomy is to make sure that for any given
context the agents are operating at an optimal boundary between the
initiative of the human and that of the agent. To the extent we can
adjust agent autonomy with reasonable dynamism (ideally allowing
fine-grained handoffs of control to occur “anytime”) and with a
useful range of levels, teamwork mechanisms can flexibly renegotiate
roles and tasks among humans and agents as needed when new
opportunities arise or when breakdowns occur.

• Safety and Privacy: **

• Trust: **

• Adaptability: **

Agents can assist warfighters and decision-makers by providing them key
information, taking initiative to offer assistance, and facilitating coordination
among warfighters. In general, they can enhance warfighter capability by
taking on “low level” tasks on their behalf, e.g., routine monitoring, but
obtaining warfighter input in critical situations as needed. The difficult issue
here is to make sure that warfighters are always in the control loop, ready to
act appropriately, without overburdening them with low-level monitoring and
decision responsibilities. Warfighters and agents must be able to
continuously observe relevant aspects of the situation—and of each
other—at an appropriate level of abstraction. This shared awareness can be
enhanced through the use of mediating representations (Ford et al., 1993)
that provide means to visualize and manipulate relevant aspects of the
situation. Furthermore, the interaction should take into account the role of
the individual within formal organizations and informal social and
technological networks consisting of warfighters, decision-makers, agents,
sensors, UAVs and so forth, enabling more rapid response to national or
international crises.

Up to now, most agent researchers have taken a technology-centric rather
than a human-centric approach to the study of human-agent interaction, with
more emphasis on logical than psychological issues. As agents increase in
sophistication and richness of interaction with humans, there will be a critical
requirement for better understanding of the novel cognitive, emotional, and
social dimensions that will emerge. Sophisticated generic methods have been
developed and used to analyze the details of human-computer
interaction(e.g., Card, Moran & Newell, 1983). More recently, new
approaches have been developed to take into account multi-agent

Relevance to the
Warfighter

Risks
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environments (e.g., Boy, 1998; Hutchins, 1995), and to use agents to model
work activities against a rich background of organizational and situational
contexts (Clancey et al. 1998; Sierhuis 2001). The eventual success of these
still-maturing new approaches is a vital part of helping researchers
understand and address important general social issues (e.g., safety, privacy,
security) that will determine the acceptability of agents for various
applications. (**Milind, feel free to add clarifications on technical vs. social
aspects here)

We assume in this forecast that the government will continue to sponsor
major agent related research efforts that may then feed into industrial
research. With this assumption we forecast the following. First, we may
soon see real commercial products that exploit human-agent interaction
technologies. Indeed, the presence of systems developed by industrial
research labs illustrates that technology for development of small-scale
human-agent interaction systems suitable for deployment in limited
situations with warfighters is already here (2002-2004). We predict that
agents will be able to support not only individuals but also increasingly
complex organizations such as heterogeneous virtual organizations spanning
multiple agencies and coalition forces. We also anticipate that human-agent
interaction will increase in flexibility and adaptivity, as agents develop the
capability of negotiating with humans and agents regarding tasks and
resources. However, issues such as trust and safety may hinder actual
deployment in the near term, requiring significant attention. An integrated
approach that takes into account people and agents from the early start of the
design and development process is required, i.e., human-centered
development (HCD). It requires both cognitive simulations of the cognitive
functions involved in the overall human-agent system, as well as an
experimental set-up where people and agent prototypes are involved. This
HCD process will be developed within the decade (2010). It is anticipated
that acceptance of such virtual human-agent organizations may depend on
non-technological organizational issues.

Human-agent interaction could not only significantly enhance individual
user capabilities, but they may also provide tremendous benefits to large and
small military units by enabling rapid coordinated response to crises and
adaptive operations in changing circumstances. The presence of human-
agent interaction tools from leading industrial research labs illustrate that this
technology has matured significantly, at least in the realm of individual
human-software agent interaction. Additional research should be devoted to
issues in human-agent teamwork.. Furthermore, general issues such as
safety, trust, privacy, and security, which might be at the core of acceptance of
agent technology in large-scale human organizations, should be more fully
investigated within the framework of human-agent systems. (**Milind, feel
free to add clarifications on technical vs. social aspects here)

Forecast

Summary and
Recommend-
ations
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Relevance to the Warfighter
Advanced sensor grids are clearly highly relevant to providing warfighters a
clear understanding of an evolving situation. However, this specific scenario
does not involve human-agent interaction except insofar as agents are used
to mediate controls and displays of this grid-derived information.

In this scenario, agents assist humans in monitoring and detection, keeping
track of multiple targets and their level of threat, and aiding humans in
making decisions under severe time pressure. This scenario emphasizes the
need for adjustable autonomy in agents, whereby agents may assume control
of monitoring and detection in routine situations, but in critical situations,
revert control to humans.

In advanced command posts, agents should be designed to support
operations within a human organization, including assisting humans in their
collaboration. Several different types of “configurations” are possible to
accomplish this goal. In the simplest configuration, an individual agent may
assist an individual human user. This individual agent may then interact with
other agents, including those that are assisting other users. In a more
complex configuration, groups of agents may assist individual users. Such
mixed human-agent groups may then interact with other human-agent
groups, forming a more complex, large-scale organization. In both
configurations, requiring agents and humans to act in a peer-to-peer team
can provide the required robustness and flexibility of operations.
Furthermore, these mixed human-agent teams may team up with other teams
to scale-up towards large-scale teams, while providing organizational
robustness and behavioral flexibility. Such teams of teams may be the key to
forming large-scale virtual organizations.

Mobile operations for urban terrains (MOUT) are a representative scenario
for mobile operations in general. Agents in MOUT scenarios clearly interact
with humans as teammates, illustrating the need for human-agent teamwork.
Furthermore, agents must often exhibit adjustable autonomy in their
interaction. In particular, they may reduce their own level of autonomy,
giving control of key decisions to humans, e.g., asking a human about
contacting UAVs for assistance in surveillance or vice versa. The scenario
also explicitly mentions the need for safety. Finally, humans in the scenario
interact with agents via wearable, handheld or mobile devices.

This scenario again requires an organization of agents to assist a networked
organization of humans. While the human-agent interaction requirement in
this scenario overlaps in requirements with the command post scenario
mentioned earlier, there is potentially a stronger emphasis on mixed-initiative
planning in this case. In particular, agents plan tasks in a mixed-initiative
manner with humans to avoid interference with coalition partners and
humanitarian operations. Furthermore, this scenario also emphasizes safety
and trust issues in human-agent interaction. For instance, a safety constraint
on agent operations may be to avoid any problems in coordination regarding
areas of operation with coalition forces, so as to avoid any potential friendly
fire incidents.

Advanced Sensor
Grids

Unmanned
Autonomous
Systems

Advanced
Command Posts

Mobile Operations

Joint/Coalition
Operations
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This scenario also requires an organization of agents to act in support of a
human organization. While agents lower down in the command hierarchy
interact with human users to ensure that appropriate information is sent to
higher-levels of the command, agents at higher levels monitor deviations
from plans and ensure appropriate notifications to human users. There are
clear parallels with scenarios discussed above, such as the command post
scenario, emphasizing the need for human-agent teamwork, and mixed-
initiative and adjustable autonomy in agents to interact within such teams.

Information assurance is clearly critical in delivering key information to
human users. It is also critical to at least some aspects of trust between an
agent and a user. However, issues involving human-agent interaction are not
relevant in this case; rather issues of interaction among agents are relevant
where information assurance is emphasized.

Logistics

Information
Assurance



Human-Agent Interaction, continued

6

Technical Description
In this section we consider various aspects of human-agent interaction,
especially those that make it so different from pure agent-agent interaction.
We do this in two parts:

First, we consider the problem of coordination of human and agent roles,
sketching out a spectrum of possibilities and attempting to dispel some of
the myths that surround naïve approaches to the design of systems intended
to provide intelligent assistance to humans. We explain some of the
difficulties caused by what Norman (1992) calls the “gulf of execution”
and the “gulf of evaluation.”

Next, we consider in turn various components of successful human-agent
interaction: teamwork, observability and interaction style, adjustable
autonomy, safety and privacy, and trust.

Most of the work in human-agent interaction is relatively recent. This is in
part because much of the early research was motivated by situations in which
autonomous systems were envisioned to “replace” human participation. For
example, unacceptable latency in ground-based control of deep-space
satellites motivated the development of NASA’s Remote Agent Architecture
(RAA). RAA was designed to be used in situations where the length of
round-trip control sequences from earth would have impaired the satellite’s
ability to respond to urgent problems or take advantage of unexpected
science opportunities (Muscettola, Nayak, Pell and Williams 1998). In
contrast to autonomous systems designed to take humans out of the loop,
the autonomous capability of recent agent research efforts such as the
Personal Satellite Assistant is specifically motivated by the need to support
close human-agent interaction (Bradshaw et al. to appear). Because these
topics are new within the agent research community, very few journal articles
or major conference papers are available. Thus, the majority of our
references will be either to agent symposia or workshop papers, or to
relevant sources from outside disciplines that bear on the topic.

A basic premise of human-centered teamwork is that humans and agents1

are two very different kinds of entities that exist in very different kinds of
worlds. For the foreseeable future there will be a fundamental asymmetry in
their capabilities: the brightest agents will be limited in the generality if not
the depth of their inferential, adaptive, social, and sensory capabilities;
humans, though fallible, are functionally rich in reasoning strategies and
their powers of observation, learning, and sensitivity to context (Agnew and
Brown, 1989). Moreover, agents interact directly and efficiently in
cyberspace but indirectly and awkwardly in the material sphere; humans
shine in the world of atoms but cannot juggle bits on their own. Adapting to
appropriate mutual roles that take advantage of the respective strengths of

                                                
1 Throughout this paper we use the term “agent” to refer to “artificial” (i.e., software or
robotic) agents.

Challenges of
Human-Agent
Interaction
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humans and agents, and crafting natural and effective modes of interaction
are key challenges.

All this being said, we do not wish to extend here the long tradition of
MABA-MABA (men-are-better-at/machines-are-better-at) lists that began
with the classic report of Fitts (1951). The point is not to think so much
about which tasks are best performed by humans and which by agents but
rather how tasks can best be shared to be done by both humans and agents
working in concert (Hancock and Scallen 1998). Licklider (1960) called this
concept man-computer symbiosis; within DARPA this concept has fueled
the creation of the Augmented Cognit ion Program
(http://www.darpa.mil/ito/research/ac/). Ford describes such symbiosis in an
ultimate form where human capabilities are transparently augmented by
cognitive prostheses—computational systems that leverage and extend
human intellectual, perceptual, and collaborative capacities, just as a steam
shovel is a sort of muscular prosthesis or eyeglasses are a sort of visual
prosthesis (Bradshaw et al., 2002b; Ford et al., 1997; Hamilton 2001).2

(Englebart-human augmentation)

Figure 1 depicts a range of possible roles that humans and agents may play
with respect to one another with varied degrees of agent initiative present.3

At the one extreme, traditional systems are designed to carry out the explicit
commands of humans. At the other end of the spectrum is an imagined
extreme in which agents would control humans.4 Between these two
extremes is the domain of today’s agent systems, with most agents typically
playing fixed roles as servants, assistants, associates, or guides. Although in
practice many do not live up to their billing, the design goal of mixed-
initiative systems is to allow agents to dynamically and flexibly assume a
range of roles depending on the task to be performed and the current
situation (Ferguson, Allen, and Miller 1996, Burstein and McDermott 1996).
A challenge is to assure that the role and degree of autonomy is
continuously and transparently adjusted to be context appropriate and within
the bounds of policy—a topic discussed below under the heading of
                                                
2  As a corollary to this line of thinking, Hoffman, et al. (2002) propose the “triples
rule,” which asserts that the basic unit of analysis for cognitive engineering and computer
science is the triple of person, machine, and context. This same triple becomes the basic
unit for the analysis of intelligence in joint human-machine systems.
3 For a more fine-grained presentation of a continuum of control between humans and
machines, see Hancock and Scallen’s (1998) summary of Sheridan’s (1980) ten-level
formulation.
4 Of course, in real systems, the relative degree of initiative that could be reasonably
taken by an agent or human would not be a global property, but rather relative to
particular functions that one or the other was currently assuming in some context of joint
work (see Boy to appear; Hancock and Scallen 1998; Barber and Martin 1999; Goodrich et
al. 2001).

Coordination of
Human and
Agent Roles
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adjustable autonomy. Moreover, the human must be aware of what the agent
is doing, why it is doing it, and where it is on its current “agenda.”

Figure 1. Spectrum of agent roles in human-agent interaction.

An agent in the role of servant offers an advantage over traditional systems
in that it would typically offer at least a minimal degree of flexibility in how
it carries out the intent of the human. The limited autonomy of an agent on
such a short leash means that it would frequently need to return to a human
for help in the face of failure or unforeseen conditions, something which
may or may not be desirable to the human. For instance, consider the mobile
operations scenario in urban terrain, discussed earlier. Here, a human may
order an agent controlling an Unmanned Ground Vehicle (UGV) to “follow
me.” Given unfavorable world conditions that prevent the UGV from being
able to follow, the agent might simply fail and report its failure. A more
helpful response for the agent would have been to suggest an alternative
method to achieve the same goal, but in simple agents of this sort, such a
capability is lacking. This is because these agents typically focus on the
tasks they have been assigned, with little or no “awareness” of the broader
context.

Though such agents may be incapable of acting as teammates with humans
and other agents, they may be adequate for many types of routine tasks that

Agent as servant
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require simple inference and adaptation. Many interface agents, including
web agents, bots, wizards, mail filtering agents, and so on, fall in this
category. While the tasks they accomplish require significant domain-level
expertise (which is very important), they have limited capability to ensure
flexible interaction with humans.

To function as an assistant, an agent must have some awareness of the
context in which the other humans and agents with which it interacts are
functioning. It must understand when and how it is appropriate to assist and
coordinate actions with others. In other words, it needs to be a teammate to a
human in at least some minimal sense.

It should be noted that agent assistants can provide help in two different
forms: one is in an advisory capacity, where the agent helps by simply
informing the human about what can be done; the other is in an executive
capacity where, like the agent servant, the agent assistant actually helps carry
out some action on behalf of the user. As Lieberman and Selker (to appear)
observe, keeping agents in an advisory mode has the advantage of avoiding
“many of the problems of loss of responsibility feared by critics of agents”
(p. **)

While developing agent assistants takes more work than developing agent
servants, the increased autonomy of assistants can improve operational
robustness since team members may provide each other mutual assistance in
service of their common goal, including ensuring critical information is
provided to teammates in a timely fashion. Consider the above “follow me”
master-servant relationship where the agent simply failed. If instead, the
human and the agent had formed a team to accomplish their joint goal, the
agent may have recognized a threat to this joint goal and suggested
alternative methods to accomplish the desired objective. For instance, an
agent may suggest on its own that it will watch the flanks as it follows the
human. Unlike traditional systems or agent servants, the agent assistant can
continue to anticipate and possibly respond to newly-identified needs while
the human is not actively attending to it.

Agents in the role of associates or guides extend the capabilities identified
above in ways that allow them to automatically or semi-automatically fill-in
for failed human or agent teammates, rapidly reorganizing team roles as
necessary. This could lead to improved flexibility of operations. For
instance, in the above “follow me” example, an agent associate or guide
may suggest that following the human is not the best plan. Instead, it may
suggest “let’s first send in reconnaissance robots before moving forward.”
Indeed such an agent, if the policies given it by humans allow, may be
permitted to take autonomous actions without necessarily consulting with the
human, in the interest of achieving the joint goal.

A persistent misperception about all forms of automation is the notion that
such assistance is a simple multiplier of human capability. Such a view is
natural because, from the point of view of an outsider observing the assisted
human, it seems that—in successful cases at least—the person is able to

Agent as
assistant

Agent as
associate  or
guide

The Substitution
Myth
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perform the task better or faster than he or she could without help. In reality,
however, help of whatever kind does not simply enhance our ability to
perform the task: it changes the nature of the task itself (Norman 1992).
Those who have had a five-year-old child offer to help them with the dishes
know this to be true—from the point of view of an adult, such “help” does
not necessarily diminish the effort involved, it merely effects a
transformation of the work from the physical action of washing the dishes to
the cognitive task of monitoring the progress (and regress) of the child.

Ignorance of such considerations leads to what Wiener (1989) called
“clumsy automation” and what Christoffersen and Woods (2002) term the
“substitution myth”: the erroneous notion that “automation activities
simply can be substituted for human activities without otherwise affecting
the operation of the system” (p. **). In refutation of the substitution myth,
Table 1 contrasts the putative benefits of automated assistance with the
results of empirical study.

Putative Benefit Real Complexity5

Better results are obtained from
“substitution” of machine activity
for human activity.

Transforms practice; the roles of
people change; old and sometimes
beloved habits and familiar features
are altered—the envisioned world
problem.

Frees up human by offloading work
to the machine.

Creates new kinds of cognitive work
for the human, often at the wrong
times.

Frees up limited attention by
focusing human on the correct
answer.

Creates more threads to track; makes
it harder for people to remain aware
of and integrate all of the activities
and changes around them.

Less human knowledge is required. New knowledge and skill demands
are imposed on the human.

Agent will function autonomously. Team play with people is critical to
success.

Same amount and kind of feedback
to human will be required as before.

New levels and types of feedback are
needed to support peoples’ new
roles.

Agent enables more flexibility to the
system in a generic way.

Resulting explosion of features,
options, and modes creates new
demands, types of errors, and paths
toward failure—automation
surprises.

                                                
5 See Hoffman’s (1997) discussion of the concept of “complexification.”
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Human errors are reduced. Both agents and people are fallible;
new problems are associated with
human-agent coordination
breakdowns.

Table 1 Putative benefits of automation vs. actual experience (adapted from
Woods 1997).

Notwithstanding these challenges, adult humans and radically less-abled
entities (e.g., children, dogs, video game characters) are capable of working
together effectively in a variety of situations where a subjective experience of
collaborative teaming is often maintained despite the magnitude of their
differences. Generally this is due to the human’s ability to rapidly size up
and adapt to the limitations of their teammates in relatively short order. As
with all automation, the introduction of agents into human work practices,
particularly agents who do not yet generally exhibit the intelligence of a five-
year old child, must be done carefully to ensure that the cost of the
coordination and monitoring demands on the human do not exceed the value
of the agent assistance offered. However, through the development of
increasingly effective means to exploit synergies provided by appropriate
combinations of human and agent capabilities, significant benefits can be
accrued even from today’s relatively simple agent systems. Thus research in
human-agent interaction can powerfully leverage the value of nearly every
other aspect of intelligent systems research.

A further challenge to effective human-agent interaction is that the agents
necessarily interpose a level of indirection between ourselves and actions in
the world. This indirectness can often lead to situations where we are misled
in our expectations about the state of the world and the effects of our actions
(Figure 2):

“The gulfs of execution and evaluation refer to the mismatch
between our internal goals and expectations and the availability and
representation of information about the state of the world and how it
might be changed. The gulf of execution refers to the difficulty of
acting upon the environment (and how well the [agent] supports
those actions). The gulf of evaluation refers to the difficulty of
assessing the state of the environment (and how well the [agent]
supports the detection and interpretation of that state)…

We can conceptualize the [agent] and its interface in this way. A
person is a system with an active, internal representation. For an
[agent] to be usable, the surface representation must correspond to
something that is interpretable by the person, and the operations
required to modify the information within the [agent] must be
performable by the user. The interface serves to transform the

The Gulfs of
Evaluation and
Execution
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properties of the [agent’s] representational system to those that
match the properties of the person.” (Norman 1992)6

Figure 2. The gulfs of execution and evaluation (Norman 1992)

In brief, people need to understand what happened and why when a
teammate alters its response; they need to be able to control the actions of an
agent even when it does not always wait for the human’s input before it
makes a move; and they need to be able to reliably predict what will happen,
even though the agent may change its responses over time (Erickson 1997).
Compounding the challenge is the fact that sophisticated agents will also
have similar needs to understand, guide, and predict the human.

Discovering means for humans to more effectively overcome these gulfs
with agents—and vice versa—is a prime focus of current human-agent
interaction research that we discuss in more detail below.

Billings (1997) describes a set of first principles of human-centered systems
that are important to consider as a preface to a discussion of components of
human-agent interaction:

“Premise: Humans are responsible for outcomes in human-machine
systems.

Axiom: Humans must be in command of human-machine systems.
                                                
6 We do not wish to imply that we are here taking a stance that the world is presented to
us directly. Rather, as George Kelly elaborated in his principle of constructive
alternativism, “‘reality’ does not reveal itself to us directly, but rather is subject to as
many different constructions as we are able to invent” (Bradshaw et al. 1993, p. 288).
Such considerations of the fluidity of meaning and interpretations are only recently being
broadened within human-agent interaction research.

Components of
Human-Agent
Interaction
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Corollary: Humans must be actively involved in the processes
undertaken by these systems.

Corollary: Humans must be adequately informed of human-machine
system processes.

Corollary: Humans must be able to monitor the machine
components of the system.

Corollary: The activities of the machines must therefore be
predictable.

Corollary: The machines must also be able to monitor the
performance of the humans.

Corollary: Each intelligent agent in a human-machine system must
have knowledge of the intent of the other agents.”7

Note that Billings’ main premise (“Humans are responsible for outcomes in
human-machine systems”) implicitly assumes a fundamental asymmetry
between humans and today’s agents. Notwithstanding this assumption, we
expect the broad balance between human and agent initiative and
responsibility to co-evolve commensurate with the degree of trust humans
are willing (or required) to exercise in particular kinds of technology for
specific contexts of use. Already we rely on technology to do things
automatically for us that were unthinkable not too long ago.

The corollaries to this premise serve to underscore the importance of
maintaining appropriate mutual awareness among team members. Each actor,
both human and agent, must not only be able to realistically assess the
overall situation and current the state of the other team members, but also to
accurately ascertain intent and reliably predict future states.

Table 2 below relates the two challenges outlined above to various
components of human-agent interaction described below that are intended to
help address them. Each of these will be addressed in more detail in the
appropriate subsections below.

Coordination of Human
and Agent Roles

The Gulfs of
Evaluation and
Execution

                                                
7 Note that this applies both to humans and to software agents.
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Teamwork Develop general principles
and mechanisms
supporting human-
machine teamwork that
can be reused in many
situations.

Provide agent services
and tools to create,
manage, and visualize
teamwork-related aspects
of the situation.

Observability
and Interaction
Style

Allow for the possibility
of different modes and
interaction styles for
agents playing different
kinds of roles.

Assure that relevant
aspects of the agents and
the situation are
observable at an
appropriate level of
abstraction and in an
appropriate interaction
style. Provide negotiation
capability and tools for
shaping shared
understanding.

Adjustable
Autonomy

Implement means for fine-
grained handoffs between
human and agent control
of tasks to take place at
any time.

Provide tools to allow
activity to be dynamically
redirected.

Safety and
Privacy

Ensure that appropriate
bounds can be set and
enforced on agent
behavior and access to
private information.

Provide feedback to
establish confidence in
the human that agent is
behaving safely and
respecting privacy.

Trust Facilitate human
acceptance of appropriate
degree of agent autonomy.

Provide feedback to
establish confidence in
human that agent is
performing predictably,
reliably, and
benevolently.

Adaptivity Provide means for agents
to tailor their coordination
style.

Provide means for agents
to tailor their behavior to
situation, task, and
individual and group
differences.

Table 2. Challenges in human-computer interaction related to various
components that are intended to help address them.

Teamwork has become the most widely-accepted metaphor for describing
the nature of human-agent interaction:8 “The overarching point from the
                                                
8  Note that although teamwork is currently the most studied perspective and hence the
one most explored in this chapter, this does not imply that teamwork is necessarily the
only or the most effective way of looking at human-agent interaction in all situations.

Teamwork
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research is that for any non-trivial level of automation to be successful, the
key requirement is to design for fluent, coordinated interaction between the
human and machine elements of the system. In other words, automation and
intelligent systems must be designed to participate in team play”
(Christoffersen and Woods 2002).

In most approaches to human-agent teamwork, as in typical agent-agent
teamwork formulations, the key concept is that of shared knowledge, goals,
or intentions, which functions as the glue that binds team members together
(Cohen and Levesque, 1991). By virtue of a largely-reusable explicit formal
model of shared intentions, general responsibilities and commitments that
team members have to each other are managed in a coherent fashion that
facilitates recovery when unanticipated problems arise. For example, a
common occurrence in joint action is when one team member fails and can
no longer perform in its role. The general teamwork model entails as a
formal consequence that each team member be notified under appropriate
conditions of the failure, and so does not require special-purpose exception
handling mechanisms to do this for each possible failure mode.9

As described previously, however, human-agent teamwork must address
more richer and more complex issues than today’s agent-agent teamwork
research. For example, even if the behavior of humans could someday be
adequately described by today’s simplistic agent teamwork models, the
behavior of humans cannot be absolutely prescribed by such models the
way that the behavior of computational agents can. Nor given the state of
today’s intelligent systems would we generally want them to be.10 A further
complication is the increased difficulty of maintaining appropriate situation
awareness for all team members, when the most natural and effective
representations of the situation for humans typically differ so greatly from
those that are ideal for agents. Differing limits in computational and human
cognitive resources (e.g., attention) must be continuously taken into account.
Moreover, the range of coordination strategies possible for teams is very
wide, and must be tailored to unique aspects of the situation, physical
locations, and capabilities of the players. In short, individual differences
among humans and, indeed, differences in both style and substance between
humans and agents on nearly every front make true teamwork among
humans and agents a challenge.

It is important to note at this juncture that researchers in human-agent
teamwork have used the term in two broad ways: 1) as a conceptual analogy
for heuristically directing research (e.g., to build systems that facilitate fluent,
coordinated interaction between the human and agent elements of the system
                                                
9 See the chapter on agent-agent interaction for more detail on general teamwork theories.
10 This is consistent with Billings’ (1997) well-known premise in his list of first
principles of human-centered systems: “Humans are responsible for outcomes in human-
machine systems.”
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as “team players”) and 2) as the subject matter for research (e.g., to
understand the nature of teamwork in people). The first activity focuses on
practical engineering of useful systems through application of human-
centered design principles, empirical studies of the use of these systems, and
often a limited commitment to studying teamwork among people. The
second activity is explicitly framed as a scientific study, and may have two
angles: 1) providing information relevant to the design of successful human-
agent systems, and 2) independent of application, understanding the nature
of cognition in people and animals. The latter activity is seen by these
researchers as essential for achieving the ultimate goals of artificial
intelligence. An adequate approach to human-agent teamwork must reflect
sensitivity to both research traditions: neither undervaluing the independent
study of social and cognitive aspects of human teamwork, nor slavishly
imitating superfluous aspects of natural systems in the development of
artificial ones, like an engineer who insists that successful airplane designs
must necessarily feature flapping wings because all birds do (Ford &
Hayes,11 1998).

We will now briefly review a sampling of common types of approaches to
human-agent teamwork.

Despite the asymmetry and heterogeneity in the human-agent relationship,
enabling agents to explicitly represent their interaction with humans in terms
of accomplishing their common joint goals is seen by many as key to
flexible and robust human-agent interaction. Perhaps the strongest
proponent of this view is Grosz (1996), but the advantages of such human-
agent team relationships have also been discussed in Grosz and Sidner
(1990), Rich and Sidner (1998), and others.

The Collagen system (Rich and Sidner 1998) is based on the SharedPlans
(Grosz 1996; Grosz and Sidner 1990; Grosz and Kraus 1996) theory of
collaboration. Collagen is a Collaborative Agent that engages users in a
collaborative discourse regarding applications of interest. The collaborative
discourse in this case is in service of the joint goal between the agent and the
user to accomplish a task. For instance, Collagen may assist users via a
collaborative dialogue in achieving their joint goal of setting up and
programming a video cassette recorder, or in planning the user’s air travel
and so on.

Collagen exploits a key aspect of human-agent collaboration: the agent’s use
of plan-recognition to model a user’s intentions (Lesh et al. 1999, Van Beek
and Cohen 1991). Given such plan-recognition capabilities, a human is not
burdened with communicating all its intentions explicitly to the agent at each
instant, thus enabling more flexible human-agent teamwork. In particular, the
agent attempts to infer the user’s intentions autonomously and take
                                                
11 Clancey (2002) eloquently argues that the term “collaboration” (as also the terms
“intelligent,” “teamwork,” and “knowledge”) should be reserved for discussions involving
people rather than today’s software or robotic agents. While his concerns about the lack of
precision with which these terms are thrown about and the profound difference between
these phenomena as they are manifest in humans vs. artificial systems have merit, in this
chapter we will not attempt to swim against the tide.

Approache s
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appropriate helpful action. 12 With documented reuse across different
applications and different users (Rich, Sidner, and Lesh 2001), Collagen
illustrates that building human-agent teams (or at least human-agent pairs)
for some kinds of tasks is within our reach.

In some teamwork approaches, humans interact indirectly with agents
through explicitly-represented proxies. Each proxy is capable of acting as a
team member. An example of this approach is seen in the Teamcore system
developed by Tambe (Tambe et al. 2000), where each proxy uses the
STEAM system (Tambe 1997) as a model of teamwork.13

Several researchers and research groups have attempted to use software
agents on a daily basis in routine activities. The first such report was from
(Kautz et al 94), who focused on using personal assistant agents to work
together to schedule talks and meetings at AT&T research labs. Later (Zeng
and Sycara 96) report on a similar experiment with software agents at
Carnegie Mellon University. Both of these research projects focused on
“visitor hosting” as an application.

In 2000-2001, the Electric Elves system was deployed for a period of several
months at University of Southern California’s Information Sciences
Institute (USC/ISI) (Chalupsky et al 2001). This is another research system
that provides proxies for individual researchers and students at USC/ISI, as
well as proxies for a variety of schedulers, matchmakers, and information
agents. The resulting team of 15-20 agents helps to reschedule meetings,
decide presenters for research meetings, track people and even order meals
for the researchers. The agents interact with the human users via hand-held
devices such as web enabled phones, palm pilots, as well as via speech, fax,
and computer monitors.

In this example, we see most of the issues discussed brought forward,
including teamwork among agents and humans via proxies, adjustable
autonomy and mixed initiative in agents when they act on behalf of users,
and safety. For instance, adjustable autonomy issues arise here, since an
agent assistant  must inform other agent proxies if a user will attend a
meeting or not. However, the agent may be uncertain about the user’s
intentions or whereabouts. In such cases, it reduces its own autonomy to
obtain the user’s input.

                                                
12 See the agent architectures and capabilities chapter for a discussion of user modeling
approaches.
13 See the agent-agent interaction chapter for more detail on Tambe’s work.
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Fig: Electric Elves: An Experiment in Deploying Agents in Human
Organizations

Sierhuis has observed that the longstanding emphasis in teamwork research
on “joint goals” and fixed task-specific “roles” seems to have
overshadowed important aspects of teamwork in practice such as shared
context, awareness, identity, and history (Bradshaw et al., 2002c). Unlike the
relatively rigid joint intentions of typical agent teamwork models, experience
in work practice underscores the importance of conceptualizing agreements
as things that are forever tentative and subject to ongoing negotiation. These
realizations have been important in the design of Brahms, a language
coupled with an agent modeling and simulation environment that can capture
complexities of observation, communication, and collaboration in the context
of group work (Sierhuis 2001).

Brahms is based on the idea of “situated action” (Suchman 1987; Clancey
1997) and offers to the researcher a tool to represent and study the richness
of activity theory and “work practice” (Clancey in press). A traditional task
or functional analysis of work leaves out informal logistics, especially how
environmental conditions come to be detected and how problems are
resolved. Without consideration of these factors, analysts cannot accurately
model how work and information actually flow, nor can they properly design
software agents that help automate human tasks or interact with people as
their collaborators. For these goals, what is needed is a model that includes
aspects of reasoning found in an information-processing model, plus aspects
of geography, agent movement, and physical changes to the environment
found in a multi-agent simulation –interruptions, coordination, impasses, and
so on. A model of work practice focuses on informal, circumstantial, and
located behaviors by which synchronization occurs (such that the task
contributions of humans and machines flow together to accomplish goals)
and allows the researcher to capture (at least part of) the richness of activity
theory.
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Among other things, Brahms has been used to model collaborative activities
between astronauts and ground crews, to study team breakdowns and find
ways of preventing such breakdowns through improved communications or
modified work practice. Its focus is now expanding to include real-time
capability that can operate in conjunction with KAoS policies and agent
services (Acquisti et al. 2002, Bradshaw et al. 2002). This combined system
is being applied to the design and implementation of software agents and
robots that will work closely in teamwork fashion with humans. Such robots,
and the software agents that implement their behavior, need to be aware of
the detailed social and environmental context in which they are operating and
of the shared understanding of the astronauts they are assisting.

For some researchers, the ultimate in human-agent teamwork is the notion of
agents that can function as extensions of the human brain (cognitive
prostheses) and body (robotic prostheses). A key feature of such extensions
is that the human can make use of such extensions more or less
transparently—even forgetting they are present—just as humans with
myopia don’t think constantly about the fact that they are wearing contact
lenses but rather about the phenomena that they see more effectively through
t h e m .  D A R PA ’ s  A u g m e n t e d  C o g n i t i o n  P r o g r a m
(http://www.darpa.mil/ito/research/ac/) is an example of an early pioneering
effort focused on appropriately exploiting and integrating all available
channels of communication from agents to the human (e.g., visual, auditory,
tactile) and conversely sensing and interpreting a wide range of
physiological measures of the human in real-time so they can be used to
tune agent behavior and thus enhance joint human-machine performance.14

For example, sets of system sensor agents (e.g., joystick), human sensor
agents (e.g., EEG, pupil tracking, arousal meter), and human display agents
(e.g., visual, auditory, tactile) could work together with a pilot to promote
stable and safe flight, sharing and adjusting aspects of control among the
human and a virtual crew member agent while taking system failures and
human attention and stress loads into account (Bradshaw et al. 2002b).

One of the long-term challenges to human-agent teamwork is representing
and reasoning about organizations of humans and agents on a large scale.
Although systems composed of large numbers of simple agents have been
developed, few systems involving highly sophisticated agents have grown
beyond the size of several dozen. Thus this subsection is more of a
prediction on how such systems may evolve than a report of results.

One approach to scaling up is constructing teams of teams. Such teams of
teams may embody required structure and leadership. For example, if we
                                                
14 A related program focused on similar issues with a robotics emphasis is NSF’s
Robotics and Human Augmentation (http://www.interact.nsf.gov/cise/descriptions.nsf/
5b8c6c912ebf7f9b8525662c00723201/5e8661fa698fe674852565d9005985ef?OpenDocum
ent). See also DARPA’s Mobile Autonomous Robot Software (MARS) Robotic Vision
2020 Program (http://www.darpa.mil/ito/solicitations/FBO_02-15.html).
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consider the advanced command-post scenario or the logistics scenario,
human-agent teams would need to be organized into teams of teams that are
hierarchically controlled in a fashion similar to the way the military is
organized today. The key point is that although specific human-agent teams
need not be hierarchically organized, groups of teams can be organized, and
dynamically reorganized, in many ways to support the particular concept of
operation.

Yet, given that even teams of agents constructed today are of limited size (a
dozen to two dozen agents), such scalability in teams of teams has not been
fully investigated. The scalability issues would likely only get more complex
with human-agent teams. The key issue is that while a team of teams has a
common goal, to what extent are individuals within individual teams first
class members of that team of teams? The following provides one illustrative
issue in such scaling. Within an individual team, monitoring of one’s
teammates is recognized as a critical responsibility of individual team
members, so as to monitor team failures, assist failing teammates etc. (Grosz
and Kraus 1996; Kaminka and Tambe 2000). Algorithms and techniques
have been devised to ensure that such monitoring can be conducted without
overburdening individuals. However, with scaling to teams of teams, should
each individual agent expend the resources to monitor all other agents in all
other teams? If it does, then it would likely overburden itself with
monitoring; if it does not, then the individual agent cannot assist other failing
members of its team of teams.

As teams grow in size and organizational structure, ad-hoc collaboration
across sub-team boundaries will often become prevalent. In order to model
and manage such collaborations, it will be useful to take some of the existing
models of collaborative interaction, such as Brahms, and try to scale them up
to larger organizations. In principle it should be possible to do this by
restricting the scope of situational awareness of each participant in the
organization to just that which is necessary. Humans and agents only have
limited information about what individuals in other parts of the organization
are doing, and this limits the opportunities for cross-organizational
collaboration. Even more difficult is the important task of being able to see
things from the point-of-view of another organization or individual.
Nevertheless, such collaborations do occur, and it will be important to model
such cross-organizational teamwork. One question is how to detect and
manage the conflicts in understanding that can arise in such situations, by
negotiation and by management of commitments.

Complex teams of teams, containing a heterogeneous mix of different types
of agents, humans, intelligent sensors, and other computational resources,
could form the basis of virtual organizations. Traditional virtual
organizations effort has focused on pooling people from a variety of existing
organizations into a virtual organization, aided by computers and information
technology (Mowshowitz 1997). With the rise of human-agent interaction,
agents could also be first class members of these virtual organizations,
enabling/facilitating military units in rapidly responding to crises and
dynamically adapting behaviors to meet the challenge of a changing
environment.

Virtual
organizations
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Such virtual organizations are likely to be developed within advanced
command post or joint/coalition operations applications. However, as
discussed earlier, creating such virtual organizations is not just a matter of
computational efficiency. Rather, difficult issues such as handoffs of tasks
from humans to agents or vice versa, or authority relationships among agents
and humans also need to be addressed. In addition, complexities such as the
need for agents to belong to multiple organizations with possibly conflicting
goals, and the coordination of redundant agents with similar goals in the
same organization must be deliberated. In such situations the formation of
ad-hoc cross-organizational teams will likely become the rule rather than the
exception, as the virtual organization reorganizes and regroups in order to
respond to changing circumstances and facilitate operational
efficiency.Military coalitions are examples of large-scale multi-faceted virtual
organizations, which sometimes need to be rapidly created and flexibly
changed as circumstances alter. The international Coalition Agents
eXperiment (CoAX, see Allsopp et al. 2002) aims to show that multi-agent
systems are an effective way of dealing with the complexity of agile and
robust Coalition operations and enabling interoperability between
heterogeneous components including legacy and actual military systems.
Integrating information across a Coalition is not just a matter of employing
technology — it involves the creation of a coherent ‘interoperability of the
mind’ at the human level as well, where many social and cultural factors
come into play. The mapping between the human and technical worlds is
accomplished through KAoS policy-based agent domain management
services are intended to allow for the specification, management, conflict
resolution, and enforcement of policies within the specific contexts
established by complex military organizational structures (Bradshaw et al.
2001). These tools and services help humans to control and visualize
interaction among coalition entities.

As noted earlier, effective human-agent interaction requires each party to do
its part to assure that its state and behavior are observable at an appropriate
level of abstraction and in an appropriate interaction style. Although this is
as much a requirement for agent-agent teamwork as it is for human-agent
teamwork, the size of the representational gulfs separating humans from
agents is much larger. Moreover, because the agent’s ability to sense or infer
information about the human environment and cognitive context is so
limited, agent designers must find innovative ways to compensate for the fact
that their agents are not situated in the human world. Brittleness of agent
capabilities is difficult to avoid because only certain aspects of the human
environment and cognitive context can be represented in the agent, and the
representation that is made cannot be “general purpose” but must be
optimized for the particular use scenarios the designer originally envisioned.
Without sufficient basis for shared situation awareness and mutual feedback,
coordination among team members simply cannot take place, and this need
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for shared understanding and feedback increases as the size of the team and
the degree of autonomy increase.15

For many years, Clark has written about the concept of “common ground”
as a foundational concept for joint conversational or perceptual experiences
among people. The idea is that two people “cannot talk successfully to each
other without appealing to their common ground,” i.e., “the sum of their
mutual knowledge, mutual beliefs, and mutual suppositions” (Clark 1992, p.
3). A similar concept seems useful in trying to understand how to maintain
coherent human-agent coordination. Christofferson and Woods (2002) find
it useful to think of this “common ground” in two separate but
interdependent parts: “(1) a shared representation of the problem state, and
(2) representations of the activities of [humans and] agents” (p. 4). Table 3
below gives examples of the kinds of things that humans and agents need to
be able to know in teamwork settings.

                                                
15 Van de Velde (1995) provides a useful discussion of the three coupling mechanisms
that can enable coordination among multiple agents: knowledge-level, symbol-level, and
structural. Symbol-level coupling occurs when agents coordinate by exchange of symbol
structures. Knowledge-level coupling occurs when an agent, through observation,
“rationalizes the behavior of multiple agents by ascribing goals and knowledge to them
that, assuming their rational behavior, explains their behavior.” Structural coupling, as
discussed extensively by Maturana and Varela (1992), occurs when two agents “coordinate
without exchange of representation,… by being mutually adapted to the influences that
they experience through their common environment… For example, a sidewalk… plays a
coordinating role in the behavior of pedestrians and drivers… [and] the coordination of
[soccer] players (within and across teams) is mediated primarily by… the ball.” Similarly,
as Clancey argues (1993), the usefulness of the blackboard metaphor is that it provides an
external representation that regulates the coordination between multiple agents.

Obse rvability
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Questions About the Shared
Representation of the Problem
State

Questions About the
Representation of the Activities
of Humans and Agents

What type of problem is it?

Is the problem routine or difficult?

Is the problem high or low priority?

What types of solution strategies are
appropriate?

How is the problem state evolving?

How did I get into this state?

What are they doing now?

Why are they doing it?

Are they having difficulties? Why?

What are they doing to cope with
difficulties? Are they likely to fail?

How long will they be busy?

What will they do next?

Table 3. Examples of the kinds of things that humans and agents need to be
able to know in teamwork settings (adapted in part from Christofferson and
Woods 2002).

The current generation of agents is capable of providing very little in the way
of the kind of feedback to humans addressed above, and humans are neither
excited about the prospect of having to tell the agents all these things
explicitly nor are they knowledgeable enough to have developed generic
cognitive instrumentation that would provide that information effortlessly.
Even at this early stage, however, we do suspect that future concepts for
agent feedback ought to be:

“Event-based: Representations will need to highlight changes and
events in ways that the current generation of state-oriented display
techniques do not.

Future-oriented: In addition to historical information, new
techniques will need to include explicit support for anticipatory
reasoning, revealing information about what should/will happen next
and when.

Pattern-based: Operators must be able to quickly scan displays and
pick up possible abnormalities or unexpected conditions at a glance
rather than having to read and mentally integrate many individual
pieces of data.”16 (Christofferson and Woods, 2002, p. 6)

                                                
16 Chernoff faces, which leverage the efficiency of human facial recognition into the
domain of statistical analysis, are an ideal exemplar of integrative pattern-based feedback
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Beyond the content of what team members need to know, we need to
consider the form in which this information is exchanged and various styles
of humans-agent interaction. Shared awareness can be enhanced through the
use of mediating representations (Ford et al., 1993) that provide means to
visualize and manipulate relevant aspects of the situation.

The choice of representation can have an enormous effect on human
problem solving performance (e.g., Larkin and Simon 1987; Glasgow,
Narayanan, and Chandrasekaran 1995). As a simple example, consider the
impact that representing information as binary numbers, Arabic numerals, or
Roman numerals has on the ability of humans or agents to efficiently
multiply. As another example, concrete or abstract diagrams can be a
particularly powerful form of knowledge representation for humans because
they allow the explicit depiction of relevant information and effective hiding
of inessential features which otherwise would have to be done at the expense
of large amounts of cognitive work. Moreover the appropriate mode of
interaction needs to be considered in the context of the task, physical
environment, and the individual preferences and capabilities of the human
under varying conditions of cognitive load. When required, interruptions of
the human by an agent must be done judiciously—with no more than the
just the necessary degree of obtrusiveness. In addition, as the level of
sophistication of communication between agents and humans increases,
future human-agent collaboration must enable people to negotiate with
agents and work with appropriate tools for shaping shared understanding.

Erickson (1997) argues that designers ought to take advantage of the
ontological expectations that users bring with them when they interact with
various portrayals of functionality in graphical user interfaces.17 For
example, specific computing functionality can be portrayed as an object or
an agent, depending on what is most natural. The desktop metaphor takes
advantage of users’ previous knowledge that office artifacts are visible, are
passive, have locations, and may contain things. “Objects stay where they
are: nice, safe predictable things that just sit there and hold things.”
Ontological knowledge of a different sort comes into play when the agent
metaphor is employed. Our common sense knowledge of what agents can
do tells us that, unlike typical desktop objects, they can notice things, carry
                                                                                                                        

(Chernoff 1973). Another outstanding example that is event-based, future-oriented, and
pattern-based is the OZ cockpit display (Still and Temme 2002)
17 This idea is related to Gibson’s (1979) original concept of “affordances” and Norman’s
elaborations regarding perceived affordances and their relationship to cultural constraints
and conventions (Norman, 1988). See also Pawson’s (2000) general notion of “expressive
systems” (Pawson 2000) where the expected behaviour of a software entity is reflected in
how it ‘expresses’ it's capabilities to the user (if it looks like a mapping tool, it should
‘behave’ like a map).
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Human-Agent Interaction, continued

25

out actions, know and learn things, and go places.18 “Agents become the
repositories for adaptive functionality.” Erickson concludes that research
“which focuses on the portrayal of adaptive functionality, rather than on the
functionality itself, is a crucial need if we wish to design agents that interact
gracefully with their users.”

**add discussion of multimodality issues here. Focus on aspects of the
problem that are unique to agent technology.

Reeves and Nass (1996) have studied the social dimension of human-
machine interaction for many years, and have concluded that humans
pervasively and unconsciously interact with technology in a social way. This
tendency is even greater when people interact with agents that may
frequently be designed to exhibit properties and an appearance that are more
deliberately human-like than typical applications. Because people are expert
in social interaction, it has been argued that agents should be designed in a
way that leverages these human strengths.

The extreme form of this view would be that the ideal agent should present
itself in the most believable anthropomorphic form possible. Not only can a
large amount of information be subtly and efficiently conveyed through
gesture, speech, gaze direction, facial expressions, and body movement, but
when well done most people seem find interaction with animated agents an
enjoyable experience. In the words of Laurel:

“First, this form of representation makes optimal use of our ability
to make accurate inferences about how a character is likely to think,
decide, and act on the basis of its external traits. This marvelous
cognitive shorthand is what makes plays and movies work… Second,
the agent as character (whether humanoid, canine, cartoonish, or
cybernetic) invites conversational interaction… [without necessarily
requiring] elaborate natural language processing… Third, the
metaphor of character successfully draws our attention to just those
qualities that form the essential nature of an agent: responsiveness,
competence, accessibility, and the capacity to perform actions on our
behalf.” (Laurel 1997)

How then do we explain the extremely negative reaction that people have in
the presence of poorly-done animated agents? Reeves concludes that a key
to effective human-agent interaction is expectancy: when the agent performs
better than the human would expect it is very good; when the agent performs

                                                
18 It is also easy for people to assume less tangible qualities about agents like that they
are internally consistent, are rational, act in good faith, can introspect, can cooperate to
achieve common goals, and have a persistent mental state. Obviously, agent designers
need to work hard to make sure that human expectation accords with the stark facts of
reality in each of these dimensions. Violated trust inevitably breeds user hostility.
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worse than expectation it is very bad.19 If a sophisticated animation is not
balanced with an equally competent and veridical performance, humans will
all too soon smell a fraud—and they will not long tolerate dressing up fluff
with a good face. In evaluating whether to use an anthropomorphic
presentation, Lieberman summarizes the central concern as being “whether
we are attracting a person’s attention to the things they are actually trying to
do or distracting them. If the character is entertaining or supportive, then
anthropomorphism can be helpful. If on the other hand it takes a person’s
attention away from the things that they are focusing on, then it’s not”
(Lieberman and Selker to appear).

The most comprehensive reference describing the technical complexities of
realistic animated agents, with emphasis on their primary applications in
education, training, and entertainment, is Johnson (to appear). An excellent
survey and discussion of issues in interface agents can be found in
Lieberman and Selker (to appear) and among two book collections of
programming by demonstration (Cypher 1993) and programming by
example (Lieberman 2001) applications.

Many autonomous systems are designed with fixed assumptions about what
level of autonomy is appropriate to their tasks. They execute their
instructions without considering that the optimal level of autonomy may vary
by task and over time, or that unforeseen events may prompt a need for
either the human or the system to take more control.

At the limit of this extreme are “strong, silent systems” with only two
modes: fully automatic and fully manual. In practice this leads to situations
of human “underload,” with the human having very little to do when things
are going along as planned, followed by situations of human “overload,”
when extreme demands may be placed on the human in the case of
automation breakdown.

The goal of designing mixed-initiative systems with adjustable autonomy is
to make sure that for any given context the agents are operating at an optimal
boundary between the initiative of the human and that of the agent. People
want to maintain that boundary at the sweet spot in the tradeoff curve that
minimizes their need to attend to interaction with the agent while providing
them with a sufficient level of reassurance that nothing will go wrong. In
principle, the actual adjustment of autonomy level could be performed either
by a human, an agent, or some third party.

As an illustration of adjustable autonomy, consider the mobile operations
scenario. Here, identifying and clearing out an enemy sniper is clearly a
difficult challenge. A soldier’s personal assistant agent may help by calling
in UAVs and asking for UAV support to clear out snipers. Complete agent
autonomy may be problematic, given uncertainties with misidentification, the
fluid nature of the combat environment, and the potential for very costly
                                                
19 Hence, it is not all bad that completely realistic animated human faces are currently
beyond the reach of technology. Studies have shown that cartoon faces can effectively
serve both purposes of conveying an anthropomorphic style of interaction while not
implying human-like intelligence or capabilities (**ref).

Adjustable
Autonomy
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errors if there are potential civilian casualties. Instead, the agent may obtain
user input in key circumstances, to ensure that superior human decision-
making capabilities and context are fully exploited.

To the extent we can adjust agent autonomy with reasonable dynamism
(ideally allowing fine-grained handoffs of control to occur “anytime”) and
with a useful range of levels, teamwork mechanisms can flexibly renegotiate
roles and tasks among humans and agents as needed when new
opportunities arise or when breakdowns occur. It is important to note that
the need for adjustments may cascade in complex fashion: interaction may
be spread across many potentially-distributed agents and humans who act in
multiply-connected interaction loops. For this reason, in problems of
realistic scale, adjustable autonomy may involve not merely a simple shift in
roles among a human-agent pair, but rather the distribution of dynamic
demands across many coordinated actors.20

An agent’s level of autonomy can be varied along several dimensions such
as: 1) type or complexity of tasks or functions it is permitted to execute, 2)
which of its functions or tasks may be autonomously controlled, 3)
circumstances under which the agent will override manual control, 4)
duration of autonomous operation, 5) the circumstances under which a
human may be interrupted (or must be interrupted) in order to provide
guidance (Dorais et al.1999). As long as the agent operates within the
constraints specified as policy, it is otherwise free to act with complete
autonomy. Policy-based constraints on behavior ideally can be imposed and
removed at any time (Bradshaw et al. 2001). This coupling of autonomy
with policy gives the agent maximum opportunity for local adaptation to
unforeseen problems and opportunities while assuring humans that behavior
is kept within desired bounds.

A key question in adjustable autonomy is how to effect graceful reductions
in autonomy as agents reach limits of their competence in a given context.
How to effect advance recognition and preparation for such handoffs is a
major research challenge.21 Several different approaches have been tried:

                                                
20 As Hancock and Scallen (1998) rightfully observe, the problem of adaptive function
allocation is not merely one of efficiency or technical elegance. Economic factors (e.g.,
can the task be more inexpensively performed by humans, agents, or some
combination?), political and cultural factors (e.g., is it acceptable for agents to perform
tasks traditionally assigned to humans?), or personal and moral considerations (e.g., is a
given task enjoyable and challenging vs. boring and mind-numbing for the human?) are
also essential considerations.
21 Malin (1997) notes significant differences in flexibility between humans and today’s
agents: “If the team members are human, there is a broad range of possible flexibility in
tasks, roles, and level of detain in communication, and support for tight and fast-paced
task sharing. The computer team member of today is likely to be slower in give-and-take
communication, less flexible and less likely to initiate a change in roles.”
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•  Uncertainty based: This approach to adjustable autonomy transfers
decision making control from an agent to a human when the agent
determines that its decision making uncertainty is high (Gunderson
1999). Some systems exploit machine learning in this reasoning to
gradually reduce uncertainty. In particular, an agent may observe human
actions, and use inductive learning algorithms to determine decision-
making rules. When the rules have sufficient confidence associated
with them (e.g., they may predict user decisions with sufficient
accuracy), the agent starts using these rules autonomously.

• Safety based: This approach transfers decision-making control from an
agent to a human if the agent’s decision can be harmful to the human
or the mission (Dorais et al. 1998).

• Capability based: This approach transfers decision-making control by
reasoning about capabilities of the agent and the human (Ferguson,
Allen and Miller 95). In particular, a human may be more capable of
performing particular tasks.

•  Decision theory based: This approach essentially combines the
uncertainty, safety, and capability based approaches. In particular, it
carefully and explicitly evaluates the costs and benefits of asking a
human, using decision-theoretic reasoning (Horvitz 1999a, 1999b). It
compares the expected utility of asking a user with the expected utility
of acting autonomously (where acting autonomously may potentially
lead to errors given an uncertain environment).

All of these approaches focus on a “one-shot” decision, whereby the agent
either makes the decision autonomously or transfers decision-making
control to a human for his or her input. Once the control is transferred, the
agent will wait as long as it takes to obtain human input. In some cases,
decisions may be better made by humans when only they have the pertinent
information, the necessary authority, or the key capabilities associated with
the action, or when there is a significant moral or risk component to the
action.

One key example of mixed-initiative and adjustable autonomy is the
Lookout system from Microsoft (Horvitz 1999a, b). In this research
application, an agent helps a person with their calendaring activities. The
agent (a personal assistant) scans the person’s email for meeting related
activities, and decides whether a meeting should be scheduled. For instance,
Figure 3 below shows an output from this system. The key issue that has
been pulled out from this application concerns initiative on the part of the
agent.  In particular, at each step it must decide whether to do nothing, to
perform a particular action for the person, or to dialogue with the person to
understand better whether or not to perform the action.

The agent’s adjustment of its own autonomy and hence its change initiative
<what is “change initiative?> is based on decision-theoretic reasoning. In
particular, here the agent automatically learns to model the utility of its three
options as a function of the confidence it has that the person desires the
particular action, and as a result to choose the option at any point in time that
will maximize its expected utility (as a function of the confidence at that
point in time).   While Lookout is a research system from Microsoft, the
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take away message is that decision analysis techniques are now maturing to
the point that they can be applied and evaluated for questions of initiative in
agent-human operations.

Figure: Output from Microsoft’s Lookout system (Horvitz 99)

Research in adaptive function allocation—the dynamic assignment of tasks
among humans and machines—also provides some useful lessons.
Examples of the types of questions and adaptive responses that might be
addressed in adaptive allocation are shown in Table 4 below.

Question Adaptive Response

Who IF: A human performs within predetermined criteria

THEN: The human shall keep task control, otherwise the
task is allocated to the agent.

What IF: Only parts of tasks are being performed poorly

THEN: Only these parts shall become available for dynamic
allocation.

When IF: Certain time periods are associated with increased
demand, error, or loss of situation awareness

THEN: These periods will be appropriate for dynamic
allocation.

Where IF: Particular environments or combinations of
environmental variables are associated with increased task
demand or error

THEN: Encountering these environments triggers dynamic
allocation.
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Why IF: Extended periods of allocation have detrimental effects
(objective or subjective)

THEN: Allocation shall both remove and return control.

How IF: Human performance, environmental attributes, and
psycho-physiological indexes are paramount for human-
agent interaction

THEN: All of these are inputs for allocation shift.

Table 4. Examples of the types of questions and adaptive responses to be
addressed in adaptive allocation (adapted from Hancock and Scallen 1998, p.
526)

As mentioned above, the cost of interrupting humans can be very high, and
thus should be carefully controlled. For example, in her pioneering research
on interface agents, Maes (1997) allowed users to manually set two
thresholds for the agent: one that provided a lower bound determining what
level of confidence the agent would require before informing the human (the
“tell-me” threshold) and another that provided a lower bound relative to
whether it would perform an action autonomously (the “do-it” threshold).
Models of human attention are currently being developed that can be used to
estimate the costs and benefits of interrupting the human’s current activities
(e.g., Horvitz **).

Most research on adjustable autonomy to date has focused on the interaction
between a single agent-human pair. The requirements of teamwork and
coordination, present in domains where human and agents act in teams, give
rise to novel challenges not addressed by previous research. One key
challenge is that in dynamic team environments agents must be judicious in
asking for human intervention. In particular, although human input can
prevent erroneous actions or lead to better decisions, an agent’s inaction
while waiting for a human response can lead to high team costs due to
miscoordination and delays. Of course, if the agent were to act
autonomously without human input, it could face significant errors in its
action. For instance, in the mobile operations scenario, three personal
assistants PA1, PA2 and PA3 of three different soldiers may work together
to come up with a new route for advance. If PA1 transfers control to its
human user to seek input, and the user is unable to provide input given the
circumstance, then PA1 will significantly delay PA2 and PA3 (who may have
already planned their parts of the route). If PA1 were to act autonomously
without human input, it could cause significant errors. Hence, an agent must
carefully weigh the cost of time lost due to delayed human input against the
benefits of receiving that input.

Scerri et al. (2001) identify the “one shot” transfer of control techniques as
culprits in this case. They suggest instead that agents engage in flexible,
multiple transfers of control, even in service of a single decision. Thus, in the
above example, if PA1 were not to obtain input from its human user, it could
take the control back from the user, then take the action autonomously. Or,
PA1 could take the control back, suggest to PA2 and PA3 that they delay the
route generation, and then give control back to PA1’s user, to give him/her
more time to respond. Such flexible transfers of control can be planned via a

Scalability
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Markov-decision-process (MDP) based implementation. However, a
significant amount of additional research is necessary as we scale up
adjustable autonomy and mixed initiative systems to larger-scale multiple
human and agent interaction. Furthermore methods for partial transfer of
control need to be investigated, e.g. giving agents the ability to autonomously
perform temporary stop-gap actions until human guidance becomes
available.

Automation safety issues have been extensively studied over decades in
domains such as the patient safety movement and flightdeck automation. The
basic principles should apply equally well to human-agent interaction.

Perrow’s (1984) classic study convincingly argued that systems that are
both highly-complex and highly-coupled (e.g., have highly interdependent
components and rapid propagation of effects among components) are
inevitably predisposed to disastrous cascading failures. Safety risks need to
be understood holistically rather than as the failure of a single component.

Complex interaction: unknown sequences which are not immediately
apparent, branching and feedback loops, failures that jump across subsystem
boundaries

Tight coupling: time-dependent non-delayable processes, rigidly-ordered
processes, single patch to successful result, little margin for error in time or
resources.

Build in buffers, continous communication flow

Message passing, asynchrony, loose-coupling in complex cooperating
systems.

Redundant pathways, backup systems, work arounds, loose coupling

Complexity is the enemy of comprehensibility; reduce when possible; learn
from what people do; invent new methods where necessary. Analyze close
calls.

Norman

Bounds of autonomy set by policy

Anticipate and plan for unexpected events and surprises

Fundamental asymmetry, but autonomy can’t always be as fine-grained as
we’d like; in crises, human may forget

Systems approach to safety—complex multi-dimensional factors rather than
a single source of malfunction.

Highly-coupled systems vs. loosely coupled: Perrow-normal accidents

Safety and
Privacy
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Asymmetry in human-agent interaction also gives rise to safety and trust
issues. Within the human-agent team, when an agent is performing its own
role autonomously, it could potentially take actions that harm human team
members. For example, in the mobile operations scenario, the agent may ask
for UAV support to neutralize a sniper, without realizing that such an action
has a slight chance of accidentally harming the humans given their
proximity. Even in our daily life, agents interacting with us could
unintentionally cause harm, albeit not physically. For instance, agents’
autonomous actions could cause harm financially (by undertaking a risky
financial transaction), socially (by taking an inappropriate social action on
our behalf), and so forth. Given even the potential for such harm, it becomes
critical to address issues such as safety and trust in human-agent interaction.
While such issues could potentially arise in interaction among agents,
avoiding harm to other agents (e.g., robots) does not (at least as yet) rise to
the same level of concern.

One key concern for researchers in human-agent interaction is to ensure that
agents will not take actions that cause harm to the humans they interact with.
In combat environments, the key problem may be any potential for physical
harm caused directly or indirectly to the human users. For instance, in the
joint/coalition operations scenario, we may need to ensure the safety of
human users as well as any potential for such harm to coalition members. In
general applications, such harm could be physical, financial (e.g., if the agent
makes financial transactions), social (e.g., if the agent schedules the user’s
social interaction/meetings), etc.

Adjustable autonomy presents one approach to address this safety concern
—agents may transfer decision-making control to users in potentially
harmful situations. However, because of errors and mismatches in agents’
world models with respect to a human user’s environment, the agents’
adaptiveness (whereby they may learn new knowledge via interaction),
means that when agents do act autonomously, they may potentially still
violate a human user’s safety. This section focuses on some of the research
conducted to ensure safety in autonomous agent operations based on
notions of exploiting Asimov’s laws as a source.

Interestingly, the early stages of this research on safety has been inspired by
Asimov’s laws of robotics (Asimov 42), i.e., from science fiction. For
instance, Asimov’s first law of robotics states that “A robot may not injure a
human being or through inaction allow a human being to come to harm”.
While stated in the context of robots, this law has inspired research in the
agents arena, to ensure that agents avoid harmful actions when planning or
when learning. Within planning, research in classical planning has focused
on defining primitives that in a credible and computationally tractable
manner make agents obey Asimov’s first law. To that end, Weld and Etzioni
(Weld and Etzioni, 94) introduced primitives “don’t-disturb” and
“restore” for safe planning using generative planning algorithms. “Don’t-
disturb” implies that some conditions are so harmful that an agent should
never cause them through planning. For instance, in the coalition operations
scenario, an agent must ensure that a coalition force is not in the line of fire.
“Restore” is a weaker primitive: it implies that an agent may temporarily
disturb a condition, as long as the condition is restored after the agent’s
operation.

Safe ty

Asimov’s laws and
safe ty in age nt
planning
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Pynadath and Tambe (Pynadath and Tambe 2001), again explicitly citing
Asimov’s first law, provide such safety primitives in the context of planning
in uncertain domains. In particular, they focus on an agent’s generation of
an optimal policy using Markov –decision processes (MDPs). If humans or
other agents identify specific states or actions as forbidden, then the MDP
policy ensures that those states or actions are never visited. Alternatively,
some states or actions may be identified as necessary and must be visited.
Pynadath and Tambe define an algorithm that ensures that such constraints
are obeyed in the MDP policy generated (extending the value iteration
algorithm for MDPs) and prove its correctness. A fortuitous outcome of
defining such primitives is that planning is speeded up, as the agents can
prune away unsafe paths from consideration.

Beyond planning, some researchers have focused on safety in plan execution
in complex uncertain domains. One important system that uses UAVs as
example domains, is the Cooperative Intelligent Real-time Control
Architecture or CIRCA (Atkins et al. 97, Musliner et al. 95). In CIRCA, off-
line compiled plans attempt to ensure safety in execution (e.g., ensure that
the UAV does not crash). However, if, during execution, the agent reaches an
unplanned-for state heralding failure, then techniques for quick on-line
response ensure such failure avoidance in execution. These techniques range
from invoking plans stored in a cache (if the unplanned-for state heralds
immediate failure) to invoking significant amounts of replanning (if there is
significant time available before failure).

Although these techniques can be used to avoid certain unsafe situations,
there remain situations, particularly in military operations, where no action
guarantees safety and freedom from risk. Adjustable autonomy can help by
deferring such decisions to humans, but as explained above that can also
incur costs and therefore risks. It is important when designing an agent
application to examine the situations in which agents will be used, determine
when safety cannot be guaranteed to a sufficient degree, and take steps of
avoid deployment of agents in those situations. The techniques described
above can help in this regard. For example, risky situations can be marked as
forbidden, so that the agents can plan to avoid them. If it turns out to be
impossible to avoid forbidden states, it is important to find this out as early
as possible, certainly during mission execution but preferably earlier, either
during the mission planning stages or the agent design stages.

Research on agent safety in learning can be divided into two categories. The
“pre-learning” category ensures that prior to learning, agent representations,
learning methods, and so forth are appropriately constrained such that after
learning, agents’ behaviors remain “safe”, e.g., they obey Asimov’s laws.
For instance, such an approach may ensure that some concepts are made un-
learnable. The advantage of this approach is that it ensures minimal run-time
effort, but sometimes it may require excessive sacrifice in what is learnable.

Asimov’s laws in
Agent Le arning
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The post-learning category focuses on testing learned knowledge after
learning. If the learned knowledge is harmful, then this knowledge is
modified to ensure that it is safe. This approach could potentially require
significant run-time effort and must suffer from run-time failures, but it does
not sacrifice expressiveness or learning to accomplish safety.  Gordon
(Gordon, 2000) illustrates both the post-learning and pre-learning
approaches in the context of agents based on finite-state machines. She
illustrates that some types of learning operators that cause modifications to
finite state machines are safe in that if some properties are true before
learning, then those properties are preserved after learning. In contrast, other
learning operators are not “safe”, and thus require post-learning tests.

Prior work on the “utility problem” in machine learning, particularly,
explanation-based learning (Minton, 90), could also be considered to have
focused on the safety of agent learning. The utility problem suggested that
sometimes learned knowledge can be harmful to agents, in that it may cause
dramatic degradation in an agent’s performance (e.g., a dramatic slowdown
in speed of problem solving). The slowdown in this context came from the
cost of indexing the learned knowledge i.e., the learned rules were very
expensive to match. Investigations to attack the utility problem also have
focused on both pre-learning approaches (Tambe et al. 90) and post-learning
approaches (Minton 90).

As with other research in human-software agent interaction, research in agent
safety has traditionally focused on individual human-agent interaction. It is
feasible that safety constraints imposed on two or more agents within a team
may conflict, e.g., in a joint or coalition operation. Such situations require
further research in agent safety to guarantee the safety of team operations,
rather than individual operations. Fortunately, there appears to be increasing
interest in safe learning agents (AAAI Spring Symposium 2002).
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Norman, p. 51, providing reassurance

Because agents differ so significantly from the applications with which most
people are familiar, we need to take into account the social issues no less
than the technical ones:

 “The technical aspect is to devise a computational structure that guarantees
that from the technical standpoint, all is under control. This is not an easy
task.

The social part of acceptability is to provide reassurance that all is working
according to plan… This is [also] a non-trivial task” (Norman, p. 51)

Lieberman, p. 9

You can’t cooperate with another agent if you assume they are incompetent
(Woods)

An agent may accept risk from the actions of others. Furthermore, the agent
may expect that the trusted agent will not take advantage of the adopted risk.
This is the general conception of trust in multiagency. Steve Marsh
produced one the earliest works on trust in multiagency [Marsh 1992,
1994]. Marsh clearly defines trust as a function of (a) a basic trust attitude
toward another agent, and (b) the value of the object of trust. In his
formulation, an agent A’s trust of another agent B must be higher than a
cooperation threshold before A begins cooperating with B. More recent

Trust
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theories of trust in multiagency are found in [Castelfranchi, Falcone 2000,
Birk 2000].

Since many of our scenarios involve dynamic teaming of agents (e.g., in
joint or coalition operations, human and agents from different organizations
may team up), trust between human and agents is critical. In particular, it is
important to trust potential team members. Practical techniques for trust (as
well as security) go beyond theory and suggest methods. For instance
mobile agents research provides practical methods.

We summarize the models presented in [Swarup and Fábrega, 1999].
Agents (called keys) are represented as nodes of a graph. Statements are
also nodes of such a graph. One type of directed edge is between two agents
(A ‡ B) and it represents that A trusts B. Another type of directed edge is
between an agent and a statement (A ‡  P), and it represents that agent A
states P. In a network of agents and statements, specific policies can be
defined. For example a policy that insists on two independent corroborating
trust paths per statement can be used to identify all agents that accept a given
statement. The number of false positive and negative statements in the trust
graph can be used in ratios of these numbers over the number of statements
to compare policies.

Trust is also related to the concepts of commitment and joint intention.
When an agent A makes a commitment to another agent B to help achieve a
goal, B needs to trust that A will live up to its commitment. However
changing circumstances and new opportunities might lead A to abandon its
commitments. Current work by Das et al. (2002) is investigating intention
reconciliation, the conditions under which agents might be motivated to
abandon their group commitments. This could be coupled with a general
model of safety in planning to avoid such situations, thus increasing the
reliability of multi-agent planning.

While these techniques are promising, they focus on interaction within small
groups. Thus, unfortunately, there is no evidence that current trust models
will scale. It is hard for humans to keep track of frequencies of encounter
and how it enhances or deteriorates trust. Psychological experiments are
needed to build methods that prove to be scalable.

Negroponte: agent knows you and knows areas of expertise

Negroponte illustrates this by a compelling example: “At a recent dinner
party I winked at my wife, and she knew all the paragraphs of information it
would have taken me (otherwise) to explain the same to some stranger. The
reason is quite obvious. A vast amount of shared experiences and robust
models of each other make the epitome of communication be the lack of it”
(p. 65) (Negroponte, N., Agents: From direct manipulation to delegation, In
J.M. Bradshaw (Ed.), Software Agents, AAAI/MIT Press, 1997, pp. 57-66).

Without constant repair of the difference between agent representation of the
world and human, lack of context, failure is inevitable.

Trust mode ls

Scalability and
Trust

Adaptivity
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Shorthand modes of communication among teammates that have the benefit
of long mutual acquaintance.

Delegation cultural and individual differences: Milewski

Lieberman: personalization and user modeling, p. 7; p. 11-cognitive style;
instructability

Flexibility, multiple perspectives (Feltovich, P. J., Spiro, R. J. & Coulson, R.
L., 1997, Issues of expert flexibility in contexts characterized by complexity
and change. In P.J. Feltovich, K. M. Ford, and R.R. Hoffman (Eds.),
Expertise in Context, Cambridge, MA: AAAI/MIT Press, pp. 125-146.)

Beginning with the initial research effort in the CAP system (Mitchell, 92)
and later efforts such as (Maes 94) many researchers have focused on
building assistants to human users by exploiting machine learning
techniques. By observing and learning from human actions, agents can learn
to filter users’ e-mail, schedule appointments, filter newsgroups, and so on.
Traditionally, this research has focused on assistants that often suggest
actions rather than act autonomously. Furthermore, the focus is often on the
agent capabilities rather than on the interaction with human users. Further
work is thus required in this area.

Risks
There are two major risks associated with human-agent interaction.

Risk 1 Scalability: First, at least when compared to interaction among agents,
much of the human-agent interaction research has focused on smaller scale
human-agent groupings, sometimes involving only one agent and one
human. With respect to scalability issues, larger numbers of agents need to
interact with a large number of humans, e.g., if a large team of agents is to be
embedded within a large-scale human organization, novel organizational
issues will need to be addressed. For instance, large-scale human
organizations may be hierarchical or may have embedded authority
structures, and agents would need to conform to these human organizational
structures and norms.

Aggravation or mitigation of Risk 1: Scalability will be increasingly critical
for any realistic application, and thus, this risk is quite real. However,
researchers are actively focusing on scaling up human-agent interaction, and
thus there is a high likelihood that on-going research will continue to
mitigate this risk.

Risk 2 non-acceptance of agents: A major risk relates to human users not
accepting agents in their midst, as assistants, as peers, as entities acting
autonomously with them or for them. The concerns could be due to the
potential for such autonomous entities to knowingly or unknowingly cause
harm to the users interests and goals, to violate the user’s trust or to violate
the user’s privacy or security, e.g., by communicating private information to
other agents. The concerns could also be that at least initially agents may
require more work in maintenance and upkeep and may not provide
significant benefits as they may not be fully integrated in the work practices.

Machine Le arning
Approache s
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However, the issues may not be purely technical and could relate to
emotional or inter-personal issues (the agent may unknowingly act in a
“rude” manner).

Aggravation or mitigation of Risk 2: Initial research in agent safety and trust
covered in this chapter would need to make significant progress to address
these concerns. The other two concerns related to privacy and security are
issues that are covered in another chapter focusing on such security issues.
However, many more careful studies in integrating human-agents are
essential to mitigate this risk.
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Forecast
We make the following key assumptions in all of our forecasts:

(i) Reasonable level of funding in agents research and in particular,
human-agents research, e.g., as seen in the control of agent-based
systems program from DARPA.

( i i )  Investigation and resolution of issues related to actual
deployment of agents in human organizations, where such issues
may be social rather than being purely technical.

A word of caution about the forecast: While some areas such as human-
agent interaction have had significant history and momentum, other areas of
research such as safety have had very little research conducted to date. Thus,
there is a higher risk associated with some of the forecast than others; and
these high-risk forecasts are marked with a “*”.

Forecast Tables



Human-Agent Interaction, continued

41

Technology
element

Near term
2001-2003

 Midterm
2004-2006

Long term
2007-2010

Core Agent Technologies

Human-agent team
interaction

]

Adjustable
autonomy & Mixed
initiative

• Implementations
of human-agent
peer-to-peer
teams rather than
master-servant
type systems
become
increasingly
standard in
research systems

• Reusable tools to
enable human-
agent teamwork
begin to be
available, with
initial
appearance of
commercial tools

• Research systems
consisting of
teams of a single
human and
multiple agents

• Consensus on
techniques to
manage single-
agent and single-
human
adjustable
autonomy

• Individual
human-agent
teams commonly
deployed with
individual agents
assisting
individual users

• Research
prototypes
involving mid-
scale human-
agent teams,
involving 10
humans and 100
agents

•  Commercial
reusable tools
for human-agent
teams more
commonly
available

• Initial
development of
tools to enable
scaability in
human-agent
teamwork

• Consensus on
techniques to
manage multi
human-agents
adjustable
autonomy
(approx 1 user
and 5-10 agents)

• Large-scale
human-agent
virtual
organizations
with about
hundred humans
and 1000 agents
in prototype
stage

• Mid-size human-
agent teams,
deployed in
small-scale
human
organizational
units
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Figure 1. Human-agent interaction Forecast Table (Part 1 of 1)

Summary and Recommendations
Human-agent interaction promises to significantly enhance individual use
capabilities. Additionally, as seen in the advanced command post scenario,
the joint/coalition operations scenario and others, this technology may
provide tremendous benefits to large and small military units by enabling
rapid coordinated response to crises and adaptive operations in changing

Technology
element

Near term
2001-2003

 Midterm
2004-2006

Long term
2007-2010

Core Agent Technologies

Adjustable
autonomy & Mixed
initiative

Safety*

(predictions of
“trust” related
issues are very
similar in nature)*

• Commercial tools
exploiting mixed
initiative/adjustable
autonomy available
for human-agent
pairs

• Initial research in
adjustable autonomy
for larger scale
human-agent
interaction (more
than one agent and
one human)

• Initial research in
safety to formalize
concepts

• Initial computational
techniques to
manage safety, and
its exploitation in
research grade
systems

• Scalability towards
the end of this
period in the
commercial tools,
enabling larger scale
human-agent
interaction (single
user and handful of
agents)

• Safety addressed in
regular
implementations in
single-agent single-
human interaction

• Investigations in
scaability in safety,
to manage safety of
groups of human-
agents

• Experiments
investigate impact of
deploying agents in
small scale human
organizations, issues
in such deployment
addressed

• Scalability towards
adjustable autonomy
in virtual
organizations and
teams of teams (with
10s of agents and
10s of humans)

• Safety addressed in
mid-size
implementations

• Continued
investigations of
impact of deploying
agents in large-scale
organizations
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circumstances. Many of these benefits may accrue via formation of large-
scale virtual organizations.

We make the following recommendations for further investment in research:

•  Scalability of human-agent interaction: Research in single-agent
and single-human interaction has reached significant level of maturity, as
seen in research products from industrial laboratories. However, there is
a significant technology gap in scalability toward large-scale human-
agent organizations, which includes interaction between several human
and agents. Investment in this area to accomplish such scale-up is
essential. The issues in scale-up are not purely efficiency related, but
more fundamental issues, such as coordination among multiple human-
agents. These issues also differ from pure issues of agent coordination,
given the asymmetry that humans bring to bear in a mixed human-agent
organization. Specific incremental targets could be laid out for issues of
teamwork, adjustable autonomy, and other aspects of human-agent
collaboration in order to ensure incremental progress toward the goal of
scalability:

o Near-term: Scaling to robust operations of a single human
and five agents. Agents in this case may be mostly software
agents.

o Mid-term: Scaling to robust operations of 10 human users
and 100 agents in a team of teams. Agents in this case may
include sensors, UAVs, and others that operate in the real-
world.

o Long-term: Scaling to robust operations of 100 human users
and 1000 agents and operate in real-world environments, with
all types of agents.

•  Deploying agents in human societies: What is the impact of
deploying large numbers of autonomous agents in human organizations
or societies? It is unclear if such deployment will be welcomed by one
and all. In this context, we recommend two types of investments:

o Investigation of safety, trust, and privacy issues in human-
agent interaction: These topics have not received much
attention in the literature, although they could be at the core
of agents’ gaining acceptance from their human users in their
day-to-day operations. In this context, investments are
needed both in basic research in this arena and in practical
technology.

o Social impact of deploying agents in human organizations:
We need a careful study of how deployment of agents in
human organizations actually changes the organizational
work practices, and of the best way to deploy such agents so
as to improve rather than degrade organizational productivity.
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As a simple example consider agents that detect computer
activity on a user’s terminal and then announce his/her
presence in the office to other members of the organization.
Such a system may have a negative impact on productivity if
humans wish to protect their privacy. While this is a simple
example, a careful investigation of such effects and potential
remedies for negative effects should be performed.
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Semantic Integration
Brief Overview

Description

To successfully perform their required tasks, intelligent information agents
require accurate and meaningful communication and integration among other
agents and information resources. However, the applications and
infrastructure of information technology are rife with differences at many
levels. This constitutes a major barrier to successful agent inter-operation but
is also an unique opportunity for agent technology. In this chapter we
address the specific problem of semantic heterogeneity, which is focused on
the fact that different applications and databases and agents may ascribe
different meanings to the same terms or use different terms in ways that are
mutually incompatible (such as different level of abstractions or generality).
Semantic issues are contrasted from syntactic or low-level structural issues,
in that they are focused on the meaning of the concepts that are represented
by terms, structures, and expressions that are exchanged among systems.

It has been recognized that the emerging technology concerned with the
development and application of ontologies will play a central role in
achieving semantic integration (Wache, et al. 2001; Stuckenschmidt and
Visser 2000). An ontology is used by an agent, application, or other
information resource to declare what terms it uses, and what the terms mean.
By making this information available to agents that are potential users, it
becomes possible for high fidelity communication to take place. Agents can
communicate and share meaning with other agents, and agents can
understand the meaning of information provided by applications, databases,
and other information resources on the Web.

Two agents can be completely semantically integrated if they have a shared
understanding of the terminology in their corresponding ontologies. If we
ultimately want automated semantic integration, agents will need to
communicate using their ontologies alone. This places a strong requirement
on the adequacy of an ontology, and current technology can at best support
semi-automated semantic integration (in which human intervention is needed
to resolve semantic disagreements.

The over-arching challenge that we are addressing in this chapter is to create
networks of semantically integrated agent communities. Meeting this over-
arching challenge gives rise, in turn, to a wide variety of other challenges.
Within such communities, agents will share and reuse their ontologies;
however, in current practice, we still encounter difficulties in reusing and
sharing the ontologies that we have designed. Given the tremendous variety
of existing ontologies, the specification of and determination of the
consistency of semantic mappings between multiple ontologies is essential.
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We identify four major architectures that are being used within industry,
government, and academia to support semantic integration. The differences
between these architectures depend on the origins of the semantic mappings
between the ontologies, the use of a mediating ontology, and the degree of
agreement that exists among the anticipated community of interacting agents.

Within the context of these architectures, we review and evaluate six major
technologies that address the challenges for semantic integration: formal
languages used for specifying ontologies; the ontologies that are currently
available to support semantic integration; techniques for generating and
testing semantic mappings between ontologies; semantic markup; software
support for the ontology lifecycle; and techniques for agent capability
matching.

Relevance to the Warfighter

The challenge of semantic integration arises in any scenario involving agents
that are designed by different teams or that are created for different domains.
It is infeasible to assume that semantic integration problems will be solved
by the adoption of a single common ontology by the U.S. military. Each
branch of the U.S. armed forces (Army, Navy, Marines, and Air Force) will
realistically use different ontologies that reflect the special nature of their
battlefield environment. Further, there is a large number of defense
contractors associated with each piece of military hardware and software, and
each of these contractors themselves face problems of semantic integration
within their own companies and supply chains. The context of modern
military operations also means that missions can often involve international
coalitions of disparate nations where prior agreements to share a single
model are unlikely.

Risks

The promise of complete automated semantic integration is to support
seamless exchange of data among computer systems that preserves the
semantics intended by the communicating intelligent agents. If this were
achieved, then software could potentially perform exactly as designed and
there would be no risks. Until we achieve complete semantic integration, all
risks are associated with incomplete integration. In such cases, we cannot
guarantee that the exchange of information among agents preserves the
intended semantics of the agents involved. In concrete terms, this can lead to
a breakdown in communication that requires the intervention of humans to
resolve semantic conflicts or to unintended behavior of the agents. The
tradeoff between the incompleteness of semantic integration and the
consequences of this incompleteness is a major research challenge.
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Forecast

The long-term goal of self-integrating agents is many years away. In the
short- and medium-term, we need to carefully examine the nature of
semantics as we understand and use it today. At one extreme, the meaning of
terms is implicit in the minds of the agent designers and in the behavior of
their agents. At the other extreme, agent ontologies provide formal and
explicit descriptions of the meaning of terms that are fully interpretable by
other computational agents. We believe that progress toward semantic
integration will take place by moving along this continuum. Only in the latter
case is it possible to ensure semantic fidelity.

Awareness of this semantic continuum is important because the goal of
achieving self-integrating agents in the general case is difficult. It is likely
that it will be a research effort of 10+ years to develop practically useful
robust self-integration in some limited contexts. Thus, we need to make
assumptions and work in restricted domains to make progress. Not all tasks
require guaranteed semantic fidelity. For these, it is possible to relax the
requirement that the ontologies are formal. Taxonomies, thesauri, and
various lexical resources such as WordNet can provide great value in
achieving semantic integration in limited ways. It is also possible to relax the
formality constraint if there is sufficient agreement about what terms mean
that it does not need to be determined at agent-execution time.

Summary and Recommendations

A key factor in the development and widespread deployment of ontologies
will be the extent to which ontologies will fulfill the promise of sharability
and reusability. To some extent, these challenges will depend on social
factors (such as the formation of community ontologies and the adoption of
standard interlingua ontologies) as well as technical factors.

There is no easy way to map at the semantic level. In the short term, the
emphasis is likely to be on tool support to enable humans to more quickly
and accurately specify pre-defined mappings that are used at runtime to
determine what a given term means with respect to a given agent’s ontology.
In the longer term, work will proceed which will enable agents to semi-
automatically determine the meaning of new terms encountered through
interactions with other agents.

There are several critical issues in semantic integration that can only be
solved by empirical approaches. Progress in resolving these issues will only
occur with the establishment of test bed environments that consist of
multiple agents and ontologies within each of the integration architectures
discussed in this chapter and that allow participants to perform experiments
that test alternative approaches.

Relevance to the Warfighter
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The challenge of semantic integration arises in any scenario involving agents
that are designed by different teams or that are created for different domains.
We cannot assume that semantic integration problems will be solved by the
adoption of a single common ontology by the US military. Each branch of
the US armed forces (Army, Navy, Marines, and Air Force) will realistically
use different ontologies that reflect the special nature of their battlefield
environment, and these ontologies must be integrated to support
joint/coalition operations. Further, there is a large number of defense
contractors associated with each piece of military hardware and software, and
each of these contractors themselves face problems of semantic integration
within their own companies and supply chains.

Advanced Sensor Grids

The use of advanced sensor grids by a coordinated team of intelligent agents
strongly depends on the semantic integration of the agents and a host of
heterogeneous information sources. Since many sensors are designed and
implemented for a wide variety of purposes outside of military applications,
it can be assumed that they will have very different ontologies. The use of
ontologies enables an integration of entities operating on different level of
abstractions. For instance an agent controlling simple sensor can operate
with a sophisticated decision-making agent even that they use concepts at
different levels of abstraction. The problem of sensor fusion consequently
includes the problem of merging multiple ontologies to ensure the best
feasible picture of the ongoing operational environment.

Unmanned Autonomous Systems

Within the context of unmanned autonomous systems, semantic
heterogeneity arises in two situations—operational and design time. The first
situation arises when different agents from the different branches of the
Armed Forces need to communicate. Unmanned systems will operate in
teams that must collectively achieve mission goals as specified by human
operators. Autonomous systems that play soccer have the luxury of
operating with total agreement and sharing of their (possibly implicit)
ontologies. This is unrealistic when we have to combine autonomous
systems that are operated by the different branches of the Armed Forces and
were designed and implemented by different defense contractors. In the
more realistic scenario, semantic integration is required to merge the
ontologies of each autonomous system to ensure that they are able to
communicate with each other and with central command.

The second situation in which issues of semantic integration arise for
unmanned autonomous systems is in the design of the autonomous systems
themselves. There is heterogeneity in the various ontologies that represent
the world at different levels of abstraction. There is also heterogeneity in the
representations for the perceptual and control subsystems within the agent.
These also require semantic integration.
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Advanced Command Posts

The lack of semantic integration between an advanced control post and the
operational units in the field can lead to the wrong tactical decisions being
made by commanders. Battle plans (at different levels of abstraction) must
be communicated to the operational units, and all of the involved parties must
be able to share the plans and updated tactical data in such a way that the
semantics of the plans are preserved.

Mobile Operations

The dynamic nature of mobile operations requires the synthesis of tactical
data from multiple heterogeneous information sources and the subsequent
update of changes to an operational plan in response to new battlefield
conditions. If all warfighter agents share a common ontology, then such
problems can be avoided. However, if different operational units are in fact
using different ontologies, then semantic integration is required to support
the coordinated action of these units in a combat situation.

Joint/Coalition Operations

In many ways, the challenge of joint/coalition operations is the prototypical
source of semantic integration problems. Any such operation not only
involves the coordination of U.S. Army, Navy, Marine, and Air Force units,
but also coordination with the armed forces of other countries, and it is likely
that there will not be a common ontology that is shared by all of these
operational units. To prevent coordination errors among coalition partners
during both planning and execution of an operational plan, the seamless
exchange of information is essential.

Logistics

The nature of materiel distribution networks and dynamic transportation
plans means that multiple operational units are constantly exchanging
logistics information at multiple levels of abstraction, both with respect to
command structures and with respect to different time horizons (e.g. hourly,
daily, longer term). Without common agreement on the semantics of
resource requirements and operational constraints, real-time integration
between both military units and suppliers cannot be achieved; the result is
that the necessary supplies are not delivered to the units as planned,
impeding the proper execution of battle plans.
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Information Assurance

Semantic integration appears to have little relevance to issues of information
assurance among agents.
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Technical Descript ion
Introduction

When agents communicate with each other, there needs to be some way to
ensure that the meaning of what one agent 'says' is accurately conveyed to
the other agent. There are two extremes, in principle, for handling this
problem. The simplest (and perhaps the most common) approach is to
ignore the problem altogether and just assume that all agents are using the
same terms to mean the same things. The assumption could be implicit and
informal, or it could be an explicit agreement among all parties to commit to
using the same terms in a pre-defined manner. This only works, however,
when one has full control over what agents exist and what they might
communicate. In reality, agents need to interact in a much wider world, where
it cannot be assumed that other agents will use the same terms, or if they do,
it cannot be assumed that the terms will mean the same thing.

The moment we accept the problem and grant that agents may not use the
same terms to mean the same things, we need a way for an agent to discover
what another agent means when it communicates. In order for this to happen,
each agent will need to make available to the agents with which it
communicates, declarations of exactly what terms it is using, and what those
terms mean. This specification is commonly referred to as the agent’s
ontology. If we were supporting communication among human agents, the
ontology could simply be a glossary. However, meaning must be accessible
to other software agents. Thus, the ontology must be encoded in some kind
of computer-interpretable formal language. Such an encoding will enable a
given agent to use automated reasoning to accurately determine the meaning
of other agents’ terms. For example, if Alice sends a message to Bob, then
along with this message is a pointer to Alice’s ontology. Bob can use
Alice’s ontology to see what the terms mean, the message is successfully
communicated, and Bob’s task is successfully performed. For this to
happen consistently, reliably and fully automatically in practice, there are a
plethora of difficulties that must be addressed.

There are many languages for expressing ontologies—and their semantic
properties vary in important ways. They may be based on different
underlying paradigms, they may support different levels of expressiveness,
and the formal properties may differ. Even if the exact same representation
language is used, two different people given the task of creating and defining
a set of terms and specifying their meaning for the same domain will
typically produce two very different ontologies. Different terms may mean
the same thing, the same term might mean different things, and some
concepts will be included by one and ignored in the other. More
fundamentally, the concepts that are identified as important may be encoded
in very different ways in the same language. They may even be logically
incompatible. Even if the same language is used, and even if there is
substantial similarity in the choice of concepts and how they are encoded, the

The Problem:
Semantic
Heterogeneity
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reasoning required to determine whether two terms actually mean the same
thing is, in general, intractable (Uschold 2001a).

It is the goal of this chapter to explore the myriad of issues and technologies
related to the goal of overcoming these problems of semantic heterogeneity.
For further reading on how semantic heterogeneity differs from other kinds
of heterogeneity (e.g., syntactic, structural), see (Stuckenschmidt, et al.
2000). Much progress has been made in these other areas. Achieving
integration at the semantic level is the most difficult and challenging goal.

Intelligent information agents require a computing infrastructure of some
sort in which to operate. The infrastructure provides the medium for
communication and interaction among agents, and for accessing applications,
databases, documents, and any other resources that agents require to perform
their tasks. The obvious infrastructure for agents to operate in is the
Web—including intra-nets within companies or the Armed Services.

In the coming years, the Web is expected to evolve from a structure
containing information resources that have little or no explicit semantics to a
structure having a rich semantic infrastructure. The key-defining feature that
is intended to distinguish the future Semantic Web from today’s Web is that
the content of the Web will be usable by machines (i.e., software agents).
This will enable semantics-preserving communication between agents who
advertise and/or require services to perform tasks on the Web, and it will
enable agents to determine the meaning of the passive (i.e., non-agent)
information on the Web that an agent requires to perform its tasks.

There is a great deal of excitement these days about this so-called ‘Semantic
Web.’ There is a feature article in Scientific American (Berners-Lee, et al.
2001), there is a major DARPA program devoted to it (DAML 2001), and
the World Wide Web Consortium (W3C) has embraced it as a formal
activity (W3C 2001). There is much research activity devoted to developing
a supporting technological infrastructure. However, it remains a vision, not a
reality.

The main ideas and issues of semantic integration that we will discuss
existed long before the Web. However, all of the technologies and
approaches have the potential to be applied on the Web. We call attention to
two main points about the relationship between agents, semantic integration,
and the Semantic Web.

1. The pervasive use of the Web by people and the attempt to automate
many tasks that people wish to do on the Web have brought the
problems of semantic heterogeneity into much clearer focus.

2 .  The Semantic Web is an excellent testbed for exploring and
demonstrating semantic integration of agents.

Sometimes, a technology we will be discussing most naturally arises in a
Web context. In those cases, we will refer to the Semantic Web as if it is the
assumed testbed for the idea. In other cases, the Web is really very much a
side issue, so we will often not bring it up.

Agents,
Semantic
Integration and
the Semantic
Web
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To address the challenges of semantic integration and reusability, various
groups within industry, academia, and government have been developing
sharable and reusable models known as ontologies. The most commonly
quoted definition of an ontology is “a formal, explicit specification of a
shared conceptualization” (Gruber 19931). A conceptualization, in this
context, refers to an abstract model of how people think about things in the
world, usually restricted to a particular subject area. An explicit specification
means that the concepts and relationships of the abstract model are given
explicit names and definitions. The name is a term, and the definition is a
specification of how the term necessarily relates to other terms. Formal
means that the specification is encoded in a language whose formal
properties are well understood—in practice, this almost always means logic-
based languages. Formality is an important way to remove ambiguity that is
prevalent in natural language; it also opens the door for automated machine
processing of intended meaning.

All approaches agree that there are two essential components of any
ontology:

1. a vocabulary of termsthat refer to the things of interest in a given
domain,

2. some specification of meaning for the terms, grounded in some form
of logic.

What distinguishes different approaches to ontologies is the degree and
manner of specifying the necessary relationships among terms. This gives
rise to a kind of continuum of kinds of ontologies. At one extreme, we have
very lightweight ones that may consist of terms only, with little or no
specification of relationships among the terms (the degenerate case of an
ontology). At the other end of the spectrum, we have rigorously formalized
logical theories, which comprise the ontologies (see Figure 1). As we move
along the continuum, the number of necessary relationships specified
increases (thus reducing ambiguity), the degree of formality increases, and
there is increasing support for automated reasoning. (See Figure 7 for an
example of an ontology that organizes its terminology as a taxonomy.)

                                                
1 In a recent special issue of IEEE Intelligent Systems on the Semantic Web, leading

workers in this even newer field of study also claim that the above definition best
characterizes the essence of an ontology [Fensel et al. 2001].

The Role of
Ontologies
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Figure 1: Kinds of Ontologies – There are many kinds of things that people call
ontologies. Moving to the right there is reduced ambiguity and increased number of
necessary relationships, formality, and support for automated reasoning. Not everyone
agrees on what is or what is not an ontology. We have drawn a line to the right of which
there is quite broad agreement that they are ontologies. To the left, it is more
controversial.
How do ontologies help? For agents to successfully communicate, they
must publicly declare what terms they are using and what those terms mean.
Ontologies are the vehicle for doing this. The promise of ontologies is “a
shared and common understanding of a domain that can be communicated
between people and application systems” (Fensel 2001). Ontologies may
be applied in a number of ways. Chief among these are (Jasper and Uschold
1999):

1. Neutral Authoring

2. Common Access to Information

3. Specification

4. Search

The key aspects of these are summarized in Figures 2 and 3. The primary
focus of this paper will be using ontologies for common access of
information, and to a lesser extent search. The others are relevant, but will
not be addressed in any detail. Also note that there are many applications of
ontologies that are covered by these four aspects. For example, the use of
ontologies in team collaboration, as glossaries for enterprises, and in support
of knowledge management are instances of common access to information.
The application of ontologies to support repositories of design knowledge is
an instance of neutral authoring.
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Figure 2: Ontology Application Scenarios – An ontology supports reuse when
it is used as a neutral authoring format; the ontology is built once, and then converted
into multiple target formats. An ontology may also be used as a specification; all
software must then be consistent with the ontology.

Figure 3: More Ontology Application Scenarios – An ontology supports
interoperability by providing common access to information. The ontology serves as an
agreed standard that is used as the basis for mapping between agents. An ontology can
also be used for concept-based structuring of information in a repository, leading to better
searching techniques for information retrieval.
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The core meaning of the word ‘semantics’ is meaning itself. In the context
of achieving successful agent communication, we are talking about the need
for agents to understand the meaning of the information that they are
exchanging and the meaning of the content of various information sources
that agents require in order to perform their tasks. We focus attention on the
questions of in what form is intended meaning expressed and how it is used.
We identify a kind of semantic continuum ranging from the kind of
semantics that exist on the Web today to a rich semantic infrastructure on
the Semantic Web of the future. We claim that progress in overcoming
problems of semantic heterogeneity will take place by moving along this
continuum.

We ask three questions that give rise to a continuum of situations. At one
extreme, there are no specifications of intended meaning at all, except those
that are in the minds of the people who use the terms. At the other extreme,
we have formal and explicit specifications of intended meaning that are fully
automated.

1. Are the semantics explicit or implicit?

2. Are the semantics expressed informally, or formally?

3. Are the semantics intended for automated processing?

We describe four somewhat arbitrary points along this continuum (Figure
4)—there are many cases that are not clear cut and thus arguably may fall
somewhere in between.

What do we
mean by
‘semantics’?

A Semantic
Continuum
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Figure 4: Semantic Continuum – Semantics may be implicit, existing only in
the minds of the humans who communicate and build systems. It may be explicit, and
informal, for example in English. Formal semantics go a long way toward reducing
ambiguity. They may serve a very useful role even if only used by humans. They also
make possible automated inference, which can enable machines to automatically infer
s o m e t h i n g  a b o u t  t h e  m e a n i n g  o f  terms.

In the simplest case, the semantics are implicit only. Meaning is conveyed
based on a shared understanding derived from human consensus. A
common example of this case is the typical use of XML tags, such as price,
address, or delivery date. Nowhere in the XML document, nor anywhere
else, does it say what these tags mean (Cover 98). However, if there is an
implicit shared consensus about what the terms mean, then people can
embed this implicit semantics in suitable wrappers. Online travel agents and
booksellers routinely do this to find the best deals. From the perspective of
mature commercial applications on the Web, this is the current state of the
art. The disadvantage of implicit semantics is that they are rife with
ambiguity. People often do disagree about the meaning of a term. For
example, prices come in different currencies, may or may not include
shipping and other services, etc.

At the next point on the continuum, the semantics are explicitly specified in
an informal manner, often in a text specification document. Until the natural
language processing problem is solved, only humans can make direct use of
informally expressed semantics. Examples of informal semantics that are
expressed in text specification documents are 1) the meaning of tags in
HTML (e.g., <h2> means second level header); 2) the meaning of the
subClassOf relationship in the original specification of the RDF Schema
language (W3C 1999); and 3) the meaning of expressions in information
modeling languages such as Dublin Core.

Typically, the semantics expressed in informal documents are embedded
(i.e., hardwired) by humans in working software. For example, compiler
writers use language definition specifications to write compilers. In the
example in Figure 5, the ability of the agent to infer something about the
meaning of fuelpump depends on the existence of a formal semantics of the
underlying ontology language that is used to specify the ontology. However,
although the semantics of the expressions in the language is machine-
processible, the semantics of the terms is not – it is for humans only. People
use the semantics of the expressions to write inference engines or other
software to correctly interpret and manipulate expressions in the language.
In this way they may embed in the code they write meanings of expressions
that are not included in the formal semantics. . On the one hand, manually
embedding the meaning of terms might be necessary; for example, there are
no formal definitions for the terminology of Dublin Core, so that any agent
system that conforms to Dublin Core has no other way of specifying its
intended models. On the other hand, different implementations may be
inconsistent.

Implicit Semantics

Informal
Se mantics
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The main disadvantage of informally specified semantics is that there is still
much scope for ambiguity. This decreases one’s confidence that two
different implementations (say of RDF Schema or Dublin Core) will be
consistent and compatible. Each implementation is different in sometimes
subtle ways, and this can result in problems if interoperability is required or
if implementations change.

In this case, we have explicit specifications of necessary relationships among
terms (i.e., ontologies) expressed in a formal language. However, those
specifications are intended for human processing only. They are, in effect,
comments expressed in a formal language. Some examples of this are:

1 .  Modal logic is used to define the necessary relationships among
ontological categories such as rigidity and identity (Guarino, et al. 1994).
These are for the benefit of humans to reduce or eliminate ambiguity in
what is meant by these notions.

2 .  Modal logic is used to define the necessary relationships among
performatives such as inform, and request in agent communication
languages (ACL; Smith, et al. 1998). Humans use the formal definitions
to understand, evaluate and compare alternative ACLs, and/or to
implement agent software systems that support these notions.

3. The axioms in many ontologies (such as the Enterprise Ontology;
Uschold, et al. 1998) are created without the expectation that they would
be automatically processed. Instead, the purpose of the axioms is to help
communicate the intended meaning to people.

However, formal semantics for human processing do not directly support
automated semantic integration of intelligent agents.

Finally, there is the possibility of explicit specifications of necessary
relationships among terms expressed in a formal language that are intended
for automated inference. The idea is that when terms described in the
specification are encountered, it is possible to automatically interpret
something about their meaning and thus how to use them. Let us consider a
simple example of how this can work (see Figure 5).

Suppose that an agent is tasked with discovering information about a variety
of mechanical devices. It encounters a Web page with the term fuel pump,
which it has never encountered before. Lacking natural language
understanding capability, the term is so ambiguous that it could mean
anything. We can reduce the ambiguity by associating the term fuel-pump
with a formal definition of what the term means (in current approaches to the
Semantic Web, this is called semantic markup). In this case, the definition
refers to a term defined in an external Shared Hydraulics Ontology. The
agent can determine from that ontology that a fuel pump is a subclass of
pump, which in turn is a subclass of mechanical device. The agent is now
able to return this document as being relevant to mechanical devices, even
though it has never before heard of the term fuel-pump. It is possible to do
this with today’s technology, as evidenced by the various research tools that
have been developed (Decker, et al. 1999; Jasper and Uschold 2001). There

Formal Se mantics
for Human
Proce ssing

Formal Se mantics
for Automate d
Infe re nce
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are also attempts to commercialize this technology (e.g., Ontoprise 2001).
Scale remains a huge barrier to commercial success.

Figure 5 Automated Machine-Processible Semantics -- An agent is searching
for information on mechanical devices, as defined in a public ontology (SHO). A
document contains the term ‘fuel-pump,’ which the agent has never encountered.
Semantic markup reveals that it is a kind of ‘pump’ as defined in SHO, which is in turn
defined in SHO as a kind of mechanical device. The agent infers that the document is
relevant.
This example illustrates the importance of semantic markup and the sharing
of ontologies. It also demonstrates the importance of formal ontologies and
automated inference. Inference engines can be used to derive new
information for a wide variety of purposes; in particular, a formally specified
ontology allows agents to use theorem proving and consistency checking
techniques to determine implicit answers to queries (e.g., that ‘fuel-pump’ is
relevant to ‘mechanical-device’) and whether or not they have agreement on
the semantics of their terminology. Suppose the agent encounters the term
fuel-pump and the agent’s ontology includes the statement that a fuel-pump
is a subclass of pump. Furthermore, pump is a term that the agent already
knows about, e.g. via a public standard ontology. Even though the agent
never encountered the term fuel-pump before, it is able to automatically infer
something about the semantics of the term because it is explicitly mapped to
a concept that is already included in its ontology. Specifically, it may infer
that it is not a typewriter, or a spaceship, because it can infer from the
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ontology that these things are not subclasses of pump. There is still ample
scope for ambiguity. We don’t know anything about how a fuel pump is
different from any other kind of pump, but we do know some of the
necessary properties of a fuel pump.

Formally specified ontologies use a logical language, such as DAML+OIL
(Hendler and McGuinness 2001) and KIF (Knowledge Interchange Format;
Genesereth and Fikes 1992; Hayes and Menzel 2001). A formal ontology
consists of a set of sentences in this underlying logical language. Within
mathematical logic1, these sentences are also known as axioms, so that a
formal ontology is also said to be axiomatized.

Challenges

The over-arching challenge that we are addressing in this chapter may be
stated as How can we create a network of semantically integrated
communities? We can think of two theoretical extremes for semantic
integration. In the first case there is complete global agreement on terms and
their meaning. Here, issues in semantic integration do not arise. There is a
single shared ontology, which need not even be explicit. At the other
extreme, there is no agreement at all; we have total semantic anarchy.

There are many good social, economic, technical, and empirical reasons why
we should never expect to achieve the former. People are reluctant to give up
their familiar terms and concepts. Vendors are reluctant to give up their
proprietary formats. Even if a standard is created and intended for use as a
common interlingua, vendors often lack sufficient economic incentive to
build and maintain robust translations to/from their proprietary formats.
From a technical perspective, different choices of terms, definitions, and
representation languages will suit different purposes—so adopting a global
standard would inhibit progress for some. Finally, there is plenty of
empirical evidence that a common global standard will never be adopted.
Even at the level of a large enterprise, experience has shown that whole
enterprise models do not succeed and can stifle innovation. Therefore we
believe that any efforts to establish universal agreement on a single ontology
are bound to fail. It should not be taken seriously as a goal.
                                                
1 For an excellent introduction to logic, see [Barwise et. al. 2000].
2 An interpretation consists of three parts:

• a set of elements (known as the domain or universe of discourse);
•  a meaning function that associates symbols in the language with individual

elements and sets of elements in the domain (intuitively this specifies what the
symbols mean);

• a truth function that associates truth values with sentences in the language.
For an excellent introduction to logic, see [Barwise et al 2000].

Introduction
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The flip side of this is that the costs of semantic heterogeneity to companies
and society are vast. The lack of standards inhibits progress for many. The
rapid growth in research about ontologies is in large part a response to this
fact. “The reason ontologies are becoming so popular is in large part due to
what they promise: a shared and common understanding of a domain that
can be communicated between people and application systems” (Fensel
2001).

In summary, the dream of global, or even enterprise-wide ontologies, data-
models, controlled vocabularies, etc. is unrealistic. Yet, the cost of complete
semantic anarchy is prohibitive. Therefore, we must move away from single-
ontology views and see how to have multiple possibly conflicting ontologies.

We need to find some ‘sweet spots’ in between these two extremes. Locally,
whenever the cost of semantic heterogeneity is too high, individuals and
companies are motivated to form semantically homogenous communities.
This entails developing standards to use locally within that community.
These standards define the terms for the domain and thus may be viewed as
(and can be formally represented as) ontologies. Local communities may
now reap the benefits from standardization. A common occurrence is for
another community to have already independently developed their own
standard ontology for a different domain. There are various cases to
consider.

1. The domains are completely different

2 .  The domains are different, with some important relationships
between them

3. The domains are essentially the same.

In the first case, there is no problem, for the two communities need never
interact. A good example of the second case is workflow and project
management. Applications in both domains have the concepts of time,
actions, and ordering of actions (e.g., before and after). Typically, such
applications do not interoperate—yet there might be benefits if they were
able to. If so, then these two communities would have to get together and
hammer out their terminological differences and devise a way to interoperate.
The third case is an extension of the second. It also requires the different
communities to get together to create mappings that cross the terminological
gap in order to achieve semantic integration.

In both the second and third cases, there is the option for both communities
to merge their ontologies where there is direct overlap. This may be
impractical if there are large repositories of legacy data that depend on these
ontologies. An alternative is to devise ways to translate between the
ontologies. This is itself a major challenge, which we consider in detail later
in the chapter.
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Another problem is that the ontologies may be specified in different
representation languages. The syntactic differences among languages are
becoming less and less of an issue with the growing use of XML. More
significant is the fact that the different languages have different semantic
frameworks (e.g., the Knowledge Interchange Format (KIF) vs. the Unified
Modeling Language (UML)). In such cases, it can be difficult to distinguish
between semantic disagreements within the ontologies and the different
semantics of the underlying languages themselves. For a good case analysis
which explores the semantic differences between two languages for
representing ontologies and the problems this causes when trying to
translate between them, see (Uschold, et al. 1998).

Even if we assume that the expressions encountered by the agents are from a
language whose syntax and semantics are already known to the agent, there
may still be incompatible assumptions in the conceptualization of the
ontology. For example, there are many debates within the ontological
community about the nature of objects, change, and identity (see Prior
1967). In one approach (known as endurantism), objects are 3-dimensional
entities that endure through time and their identity does not change as they
exist from moment to moment. In another approach (known as
perdurantism), objects are 4-dimensional entities that have temporal “parts”
existing at every moment within some temporal interval.

Even if we assume that the conceptualizations are compatible, it is still
possible, indeed likely, that different people will build different ontologies
for the same domain. Two different terms may have the same meaning; the
same term may have two different meanings. The same concept may be
modeled at different levels of detail. A given notion or concept may be
modeled using different primitives in the language; for example, the concept
of being red may be modeled by having the attribute color with value Red, or
it may be modeled as the class RedThings. In determining whether or not
translation is possible, the challenge is to distinguish between the superficial
differences (such as Red vs. RedThings) from the more substantial
differences that reflect radically different ontological commitments. In the
former case, it is possible to specify semantic mappings between the two
ontologies, but not in the latter case. Unfortunately, there are very few
ontologies available that can be compared in this way, and we currently have
no idea whether or not incompatible ontologies will be a widespread problem
in practice.

In meeting the over-arching challenge of creating a network of semantically
integrated communities, a variety of more specific challenges arises. Perhaps
the most fundamental of these is in the area of semantic mapping and
translation, which enables the terms in one agent’s ontology to be translated
into those in another agent’s ontology. Crucial also is the fact that agents
need to be able to locate the appropriate information resources, applications,
etc. that enable them to perform their tasks. This requires that the content of
these resources are associated with semantically well-defined concepts—we
call this semantic markup. Semantically marking up things is a lot of work;
people will not do it unless there is an immediate significant payback. A
major challenge is to create semantic markup automatically.

Barriers to
Agent
Communication

Specific
Challenges
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A third major challenge is the difficulty of building good ontologies. It is
very time-consuming, and difficult to do well. Once there are a lot of
ontologies around, there is the challenge of reusing and sharing them to
reduce the extent to which semantic heterogeneity issues arise.

Finally, we consider the challenge of fully automated self-integrating agents.
This is a long-term goal. There are fundamental barriers in the way. One is
the fact that the kind of inference required to achieve this fully automated
agent integration is computationally intractable in the general case.

In the remainder of this section, we consider these major challenges, in turn:

1. Semantic Mapping and Translation

2. Semantic Markup

3. Difficulty of Building Ontologies

4. Reusing and Sharing Ontologies

5. Self-Integration

We have started to see a proliferation of largely stand-alone ontologies that
are useful in their local context. However, because they are independently
developed, semantic interoperation among systems and applications that use
different ontologies is greatly hampered.

The first step toward achieving semantic integration is for agents and
information resources to publicly declare what terms they use and what they
mean. However, given that the ontologies are often developed independently,
and there is the need to express the meaning of a term from one ontology
using terms from another ontology, the burden of semantic integration rests
on the need to translate between ontologies. We address this fundamental
challenge first.

The terms ‘mapping’ and ‘translation’ as applied to ontologies are not used
in a consistent manner in the literature. To avoid confusion, we will use the
terms in the following way:

Mapping: the specification of one or more links which say how to express
the meaning of a term from one ontology in terms of the other ontology. A
link may be simply from one term to another, or it may be a complex rule. A
mapping from one ontology to another is a set of such links.

Creating a Mapping: the process of creating the individual links that
comprise a mapping. It would normally make perfect sense to use the word
mapping as a verb for this—however, we will refrain from doing so, to avoid
term overloading.

Translation: the execution of a mapping. One may translate a whole
ontology, a portion thereof, or just a single term.

The challenges of semantic mapping and translation are many. To recap
briefly, the semantic foundations of the formal ontology representation

Semantic
Mapping and
Translation
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languages are often different; when the same language is used, people still
conceptualize domains differently, and sometimes they will be incompatible.
They will typically use different terms for the same concepts, and the
concepts are often encoded using different language constructs, making it
hard to translate back and forth. Even if none of these differences were
present, it is not in general computationally feasible to automatically
determine whether two terms actually mean the same thing.

Partial Translation – Any approach to semantic integration must face the
challenge of partial translation—cases where there exist interpretations of
terminology of the one agent’s ontology that do not  correspond to
interpretations of the terminology of the other agent’s ontology. Complete
semantic integration is not possible in this case, since not all concepts can be
exchanged while preserving the semantics; however, it is still possible to
preserve the semantics of the concepts that the agents do share.

Partial translation arises primarily in three different scenarios. The agents’
ontologies may use the same terminology for some sub-domains but not for
others. For example, the agents may agree on the semantics of their process
terminology but disagree on the semantics of their product terminology; the
agents can therefore exchange any sentences that refer only to processes, but
they cannot guarantee that semantics will be preserved if they exchange
sentences that refer to product information.

The problem of partial translation often arises from the use of ontologies for
generic domains (e.g., processes and products) together with agent-specific
extensions to these generic ontologies. In practice, there will typically exist
agent-specific extensions to any shared ontologies, so there may exist direct
semantic mappings between agents that cannot be generated dynamically
from the shared ontologies alone. However, if one agent draws a conclusion
which is partly in a shared ontology and partly in its own private ontology,
how does it communicate this conclusion to another agent? One approach is
to restrict information exchange to terminology in shared ontologies. For
example, there may exist a process ontology with a taxonomy containing the
class process  and two subclasses, manufacturing_process  and
transport_process. Suppose further that generic processes have duration
and require resources, and that manufacturing processes transform input
material into output material using a machine, whereas transport processes
change location. An agent who knows only about manufacturing processes
cannot share everything with an agent who knows only about transport
processes; however, they can share those portions of process descriptions
that use only the generic process ontology that they have in common.

Finally, partial translation arises in cases where two ontologies make
different assumptions about the domain. For example, logistics management
systems often make the assumption that time is discrete (e.g., there is no day
between Monday and Tuesday); on the other hand, manufacturing
scheduling systems often make the assumption that time is not discrete.
These two systems cannot share all of their information, but they can share
what they have in common, such as the ordering of time points.
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In order for agents to understand the content of various information
resources, that content must be marked up with semantic information.
Consider the fuel pump example discussed earlier in the section on the
semantic continuum. The fact that the term fuel-pump was associated with a
formal definition was critical to this working. This is semantic markup. The
challenge is to achieve semantic markup of Web resources on a large scale.
It is difficult and time-consuming for people to provide semantic markup for
preexisting documents. Authors who are creating content could do so much
more easily, but it is still time-consuming. A further problem is that people
will not take the trouble to markup their content unless they perceive a clear
benefit. Hardly anyone bothers to use the non-semantic document metadata
for Microsoft Word, for example. Even though this is a relatively minor
inconveniencet, there is no widespread perception or experience that doing
so is beneficial. Semantic markup will likely be much more time-consuming
and difficult to automate than non-semantic markup, although there is much
available by way of automated assistance.

The punch line is that for semantic markup to happen, the pain/gain ratio
must be very low. Yet, it is completely critical to enabling semantic
integration.

Building ontologies is difficult, time-consuming, and expensive, particularly
if the goal is the design of an ontology that supports automated inference.
One reason is that the task of building ontologies to support semantic
integration is a microcosm of the integration problem itself. Semantic
agreement between ontologies presupposes that there is consensus among
the people who are building the ontologies, and the lack of consensus is one
of the primary bottlenecks during ontology design.

Consensus is difficult to achieve because different design team members
often have multiple perspectives on similar concepts. This is especially
problematic when the team is multi-disciplinary, which arises, for example, in
problems related to supply chain management. In such cases, the challenge
is to identify which disagreements reflect different ontological commitments.
In practice, the quest for consensus is dealt with in a variety of ways. At one
extreme, small lightweight ontologies are developed by large numbers of
people and then merged. At the other extreme, rigorous formal ontologies
are developed by consortia and standards organizations. In the former case,
there is a greater need for ontology mapping and merging, while the latter
case requires better support for collaborative design and ontology analysis.

Another reason for the difficulty of ontology design is that ontologies are
intimately bound to the problems of common sense reasoning within
Artificial Intelligence (Hayes 1978, 1985). Such problems are notoriously
difficult because seemingly trivial and obvious phenomena can in fact be
quite challenging to deal with in knowledge representation languages and
automated reasoning systems. To this extent, progress in ontology design
will be heavily dependent on new research in common sense reasoning.

Finally, it is probably naive to expect that there will be a widespread
development of ontology by the general public as it was Web sites using
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HTML, even if the best ontology design lanaguage is standarized.
Publishing Web pages has an important incentive for people. The web page
is aimed for other people so its author can immediately get the attention of
others. The ontologies are mainly dedicated for agents and are usually
transparent for humans. Thus the author of ontology will not instantly get
any attention or credit from others. Certainly, there will be ontologies
developed when people are paid for it in areas, which requires rigorous
quality and robustness as military or health-care applications. Today, there
are many Web pages, which were developed by people who were paid for it.
However, they constitute any some percentage of the Web. The real power
of the Web is created by people developing pages not being paid for it.
Probably, in order to achieve the same power of the Semantic Web the only
way is to develop automatic ontology development tools based on natural
language processing and causal reasoning1 (Pearl 1997). Still, using the
existing knowledge and tools it is possible to create islands of ontology
adaptation in the areas such as military.

Although ontologies came to prominence within Artificial Intelligence
through the DARPA program for Sharable and Reusable Knowledge Bases
(Neches, et al. 1991; Gruber 1995), there is still limited reuse and sharing of
ontologies. It is difficult to determine why this is the case (Uschold, et al.
1998; Pinto 1999; Goldstein and Esterline 1995). The Ontolingua ontology
library at the Knowledge Systems Laboratory contains almost 100
ontologies (http://www.ksl.stanford.edu/software/ontolingua), but there are
limited links among most of them. There are cases of multiple independently
constructed ontologies for the same domain (such as enterprise integration:
Bernus, et al. 1996; Fillion, et al. 1995), yet there is no reuse or sharing of
concepts between them. Within the context of semantic integration, this
becomes the problem of how agents determine that they have overlapping
sets of concepts and that they possibly share the semantics of their
terminology.

Many ontologies originate as domain ontologies within different
applications and scientific disciplines ontologies (Ashburner 2000; Cohn
2001; Dalianis and Persson 1997; Smith and Becker 1997). It may be
argued that there are few domain concepts in common between physics and
logistics and hence little reuse between ontologies for these domains.
However, such domain ontologies often use very similar generic concepts;
for example, both may contain a common ontology of time. The challenge of
reuse and sharing involvesthe task of identifying the generic concepts within
a domain ontology (see Figure 7). In fact, the goal of the Standard Upper
Ontology project (Pease 2001) is to define a generic ontology that more
domain-specific ontologies can reuse in this way. The Cyc ontology [Lenat
1995] also supports this organization.

                                                
1 http://www.philosophypages.com/lg/e14.htm
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Figure 7: An Example Ontology –In this case, we have a set of specific concepts
for a particular domain attached to a set of more general concepts, which may be used as a
shared basis for many other domain ontologies. The generic part is called an Upper
Ontology; the specific part is called a Domain Ontology.
Ontologies often have overlapping concepts, and these may cause problems
with reuse. For example, the Standard for the Exchange of Product data
(STEP; ISO10303) was designed for product modeling, and the Process
Specification Language (PSL; Schlenof, et al. 1999) was designed for
process modeling. However, both ontologies contain the concept process-
plan, which is the sequence of activities that must be performed to
manufacture a product according to its design specifications. Unfortunately,
this concept is defined very differently in the two ontologies, preventing easy
reuse between them.

Other key barriers to reuse were introduced earlier. One is the fact that
ontologies are expressed in different languages. Even if the same language is
used, there may be incompatible assumptions in the conceptualizations. Even
if the conceptualizations are the same, people will still build different
ontologies in the same domain. Terms will mean different things; different
language constructs will be used to represent the same concepts.

Automated semantic integration is the semantics-preserving exchange of
information between intelligent agents with no human mediation during the
agents’ first encounter. Self-integration extends the automated semantic
integration of a set of agents to include support of their cooperation in
achieving some task. To achieve self-integration, agents must be self-
describing—they need to advertise their capabilities, determine the
capabilities of other agents from their advertisements and match the
capabilities of other agents to achieve goals associated with the required task.
In a self-describing system, each agent formally communicates the set of
behaviors that it can exhibit as required by the actions of other agents. To

Self-Integration
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achieve self-integration, each agent is not only self-describing, but must also
have some comprehension of its role within the task that the entire set of
agents is achieving.

Many of the problems caused by semantic heterogeneity are inherent and
will never go away. The challenge to the agent community and the ontology
community is to discover where progress is possible and to move forward.

At least three main approaches exist. First, a lot of benefit can be obtained by
increasing the degree of standardization, both in the languages and in the
content of the actual ontologies. Second, where standardization is not
possible, technologies need to be developed for mapping and translating
between and among ontologies. Thirdly, when problems are known to be
impossible, the challenge, in general, is to find ways to make simplifying
assumptions that enable agents to do useful things in practical situations.

In the next two sections, we discuss ways to meet the above challenges. First
we take a close look at four architectures for achieving semantic integration.
This addresses the over-arching challenge of forming a network of
semantically integrated communities. Following this, we take a closer look at
a variety of specific technologies that can be used to address the more
specific challenges discussed in the previous sections.

Meeting the
Challenges
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Architectures for Semantic Integration

In this section, we consider ways to achieve accurate communication between
agents that cannot be assumed to be using the same ontologies. A semantics-
preserving exchange of information means that there are mappings between
logically equivalent concepts in each ontology. The challenge of semantic
integration is therefore equivalent to the problem of generating such
mappings, determining that they are correct, and providing a vehicle for
executing the mappings, thus translating terms from one ontology into
another.

We are considering the agents to be operating in an open environment. For
simplicity, we will consider just two agents (Alice and Bob). They are
attempting to communicate with each other, but have never interacted before.
This is the environment in which most warfighter agents may be interacting,
particularly in the case of joint coalition operations. It is also a more general
case than a more closed scenario in which a fixed group of partners (such as
a consortium, group of defense contractors or a defense alliance such as
NATO) attempts to establish interoperability among their software a priori.

There are a variety of architectures that may be used to achieve semantic
integration. The differences depend on the origins of the semantic mappings,
whether there is a mediating ontology, and the degree of agreement that
exists among the anticipated community of interacting agents. Different
architectures can be distinguished and compared to one another by
considering the following questions:

1. Who is generating and testing the semantic mapping?

a. agent designer

b. ontology designer, agents are reusing them

c. agents themselves, dynamically at agent-interaction time

2. When are the mappings created that make the link between one
agent’s ontology and the other one’s ontology?

a. Mappings are pre-defined; the agents execute them to achieve
translation between their ontologies;

b .  Mappings do not exist a priori; they are dynamically
generated and executed to achieve translation.

3. What is the topology of the architecture?

a. Mapping is done point-to-point between the agents;

b .  Mapping is mediated by a third ontology (or set of
ontologies).
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4. What is the degree of agreement between the agents?

a. Single agreed-upon ontologies within a community, possibly
merged from existing ones

b. Alignment—could be loose or strong

c. No a priori agreement

In this section, we present four types of architectures that are used to
integrate agents. Each answers the above questions in different ways. The
properties of these various architectures are introduced below and
summarized in Table 1. We elaborate on each in subsequent sections.
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Architecture Who generates
the mappings?

When is the
agent-to-agent
mapping
defined?

Topology Degree of
Agreement

Manual
mapping

Agent designers Automatically
generated when
agents interact

Point-to-point No a priori
agreement

Interlingua
ontologies

Agent designers Defined before
agents interact

Mediated Shared
ontologies

Community
ontologies

Ontology
designers

Defined before
agents interact

Mediated Alignment

Ontology
negotiation

Agents
themselves

Automatically
generated when
agents interact

Point-to-point No a priori
agreement

Table 1: Semantic integration architectures.
Current practice for integrating software applications relies on syntactic
specifications with no explicit semantics; humans are required to construct
translators between the applications based on the implicit semantics of their
terminology (Bernus, et al. 1996; Fillion, et al. 1995; West and Fowler
1996). Ambiguity, unstated assumptions, and lack of agreement on the
implicit semantics make integration an exceedingly difficult exercise.

Figure 8: Status Quo – The status quo in semantic integration does not use explicit
ontologies. Ambiguity, unstated assumptions, and lack of agreement on the implicit
semantics of the terminology used by software applications makes integration an
exceedingly difficult exercise.

Status Quo
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The distinguishing feature of this architecture is that the agent-to-agent
mapping is defined manually before the agents interact. The agents
themselves do not generate the mappings; instead they execute them to
achieve translation between the terms in their respective ontologies. The
mappings are generated directly between the agent ontologies. There is no a
priori agreement or sharing of ontologies assumed in this architecture.

Although insufficient to support self-integration, manual point-to-point
translation between agent ontologies is at the leading edge of current
technology. Humans generate hypothesized semantic mappings between the
agent ontologies and then test these mappings to determine whether or not
they actually preserve models of the ontologies (Obrst 2001; Fillion, et al.
1995).

Figure 9: Manual Mapping -- The thin arrows represent manually specified
mappings between ontologies which are executed at agent-interaction time to translate
between the agents’ ontologies. There is no a priori agreement about semantics between
the agents, and the mappings are point-to-point between the agents.
The Manual Mapping architecture does address the major problem with the
status quo, where the semantics are not explicitly captured in an ontology.
Thus, integration often fails because each human user involved believes that
their interpretation of the meaning of some term is consistent with the
intended interpretation. There is no way of objectively determining whose
interpretation is correct. By using explicit ontologies for software
applications, it is easier to determine their correctness. Even if the ontologies
are merely natural language glossaries or data dictionaries, this can help a
human determine correct mappings. If they are in a formal language, this is
even better, even if it is still just the human using the definitions. Automated
inference may also assist in the verification of an ontology, which in turn can
lead to complete semantic integration.

Although complete semantic integration can be achieved in this way, the
obvious drawback of this approach is that it requires intensive human
intervention and does not support the self-integration of agents since all of

Manual
Mapping



Semantic Integration

29

the semantic mappings between the agents’ ontologies have been specified
prior to their first encounter.

The Interlingua architecture is a generalization of the Manual Mapping
architecture. Its distinguishing feature is the existence of a mediating
ontology that is independent of the agents’ ontologies and which is used as
a neutral interchange ontology (Ciociou, et al 2001). The semantic mappings
between agent and interlingua ontologies are manually generated and verified
prior to agent interaction time (Schlenof, et al. 1999). This process of
creating the mapping between the agent ontology and the interlingua
ontology is identical to the process of creating a mapping directly between
two agent ontologies, as is done in the Manual Mapping approach. As such,
we can consider the agent ontologies to be integrated with the interlingua
ontology.

This architecture is much more powerful than Manual Mapping, particularly
when there are many agents leading to the creation and maintenance of
mappings becoming unmanageable. For example, we only need to specify
one mapping for each agent ontology, whereas the Manual Mapping
architecture requires a mapping for each pair of agent ontologies. The
existence of the pre-defined mappings between the agent ontologies and the
interlingua ontology enables the automatic generation of a point-to-point
mapping between the agents’ ontologies. If one agent’s ontology changes,
then only one mapping need be affected, rather than one for each agent. New
agents can subscribe to the community of agents using this interlingua
merely by creating a mapping to and from the interlingua. With no changes
to their own mappings, all other agents now can translate between their
ontology and the new agent’s ontology. This was not possible in the manual
mapping case because every point-to-point mapping has to be pre-specified.

Semantic mappings express the meaning of a term from one ontology in
terms of the other ontology. Each such mapping rule may simply link one
term to another or may specify a complex transformation. In the interlingua
approach, there are two steps in translation: the execution of the mapping
from the agent ontology to the interlingua and from the interlingua to the
other agent’s ontology. If the agent ontologies and the interlingua ontology
are specified using the same logical language, then the translation can be
accomplished by applying deduction to the axioms of the interlingua
ontology and the formal mapping rules ([Ciocoiu 2002], [Ciocoiu & Nau
2000]). If these mapping rules have already been verified to preserve
semantics between the agent and interlingua ontologies, we are guaranteed
that translation between the agents also preserves semantics. In effect, a
direct mapping rule from one agent’s ontology to the other agent’s ontology
is inferred from the two separate rules. If run-time translation efficiency is
important, then the point-to-point mapping rules could be cached as explicit
rules; otherwise they need only be implicit. When they are implicit, then the
otherwise distinct processes of creating and executing a mapping is
conflated—it happens at the same time, rather than being two separate steps.
See (Uschold, et al. 1999) for a more detailed discussion of the tradeoffs
between the point-to-point and interlingua approaches.

Interlingua
ontologies
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Figure 10: Interlingua Architecture -- Alice’s designer specifies the semantic
mapping between Alice’s ontology and a standard interchange ontology, and Bob’s
designer specifies the semantic mapping between Bob’s ontology and the same
interchange ontology. When Alice and Bob first interact, they use these previously
specified mappings to automatically generate the semantic mappings between each other’s
ontologies. In this case, the interlingua ontology mediates the mapping between the agent
ontologies. The agents that wish to participate in this architecture must agree a priori to
use the interlingua ontology. The thin arrows represent manually generated mappings
created by the agent designers prior to agent integration. The thick arrows represent the
[possibly implicit] agent-to-agent mapping that is automatically generated.
The interlingua need not be considered to be a global ontology that all agents
are required to use directly. Rather, it should be considered to be a mediating
ontology, as in Infomaster (Duschka and Genesereth 1997), in which all
agents use their native ontology for their own reasoning and only use the
interlingua ontology to communicate with each other. This perspective is
particularly relevant if we consider the agents to be using heterogeneous
information resources. Both the users’ terminology and the native
terminology of the information sources are mapped to a mediating ontology
that can be thought of as specifying a reference terminology for the domain.

The Interlingua architecture is designed to work best in the context where
there are a variety of different kinds of information sources, all pertaining to
a common domain, rather than being an overall architecture for a multiplicity
of domains. For example, planning information in a battle scenario would be
exchanged between mobile operational units and the command posts via an
interlingua process ontology. In practice, however, agents will use ontologies
in multiple domains (e.g., process, product, resource, services) so that the
architecture must be generalized to be “multi-hub”, in which there may be a
different interlingua ontology for each domain. In this case, an agent directly
linked to one hub could be integrated with an agent in another hub if point-
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to-point mappings between the hubs were provided. The critical challenge
for such an approach is to ensure consistency among the set of overlapping
concepts between each domain, a problem that motivates the Community
integration architecture.

Community ontologies are constructed by aligning existing ontologies
through semantic mappings generated prior to agent interaction; agent
ontologies use concepts from different modules of the community
ontologies and generate direct semantic mappings from the alignment
mappings. This approach is best exemplified by the following quote from
Hendler (2001):

 “The Semantic Web, as I envision it evolving, will not be primarily
comprised of nice neat ontologies that have been carefully constructed by
expert Artificial Intelligence researchers. Rather, I envision a complex web
of semantics ruled by the same sort of anarchy that currently rules the rest
of the Web. Rather than a few large, complex, consistent ontologies, shared
by great numbers of users, I envision a great number of small ontological
components largely created of pointers to each other and developed by Web
users in much the same way that Web content is currently created.”

The Community architecture enables the reuse of predefined semantic
mappings between existing agent ontologies, rather than generating new
direct semantic mappings between agents at runtime. For example, suppose
there is an ontology of resources (Onto1) and a manufacturing ontology
(Onto2); within the ontology library, these ontologies are merged by a
mapping in which the concept of “machine” in Onto2 is a subclass of the
concept of “reusable resource” in Onto1. If Alice uses Onto1 and Bob uses
Onto2, then they can use the predefined alignment mappings to map their
concepts without generating any new semantic mappings.

In Figure 11, the community ontology consists of three previously defined
and aligned ontology modules; each agent ontology uses two of these
modules, although they only completely share one of these modules.
Perhaps the best examples of this architecture are the Ontolingua library of
ontologies (Farquhar, et al. 1996) and the DAML ontologies
(www.daml.org/ontologies/).

Community
ontologies
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Figure 11: Community Ontologies -- In this architecture, we assume the
existence of a library of ontologies that has been built by aligning ontology modules
developed by some user community. Alice’s and Bob’s designers use ontologies from this
library, so that when Alice and Bob first interact, they reuse the relationships that were
defined when the ontology modules were originally aligned in order to automatically
generate the semantic mappings between each other’s ontologies. Although the
community ontology is also a mediating ontology, this architecture differs from the
Interlingua approach insofar as it is the ontology designers who generate the mappings
rather than the agent designers and the agents use the community ontologies internally
rather than translating into them from some other internal ontology. Thin arrows
represent alignment mappings between ontology modules generated manually by the
ontology designers. Thick arrows represent automatically generated direct semantic
mappings between the agents.
The axioms in the agent ontologies are reused from the ontologies shared by
the community. Since the shared ontologies are assembled “bottom-up”
from independently designed ontologies, they attempt to alleviate one of the
drawbacks of the Interlingua ontology, namely, the prohibitive cost of
developing the interlingua ontologies.

The alignment mappings among the modules of the community ontologies
that are used in an agent’s ontology are included as axioms in the agent’s
ontology. Within the literature, these mappings have also been called
articulation rules (Noy and Musen 2000). Note that the ontology designers
are responsible for generating and testing the semantic mappings; the agent
designers need only identify the ontology modules that they use.

In this architecture, agents generate and test hypothesized semantic
mappings at runtime without the use of any predefined mappings (Bailin
1999; Truszkowsi and Bailin 2001). In some sense, this architecture is the
Holy Grail of semantic integration, since there is no human intervention in
the agent interaction (except during the design of the agent ontologies).

Ontology
negotiation
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Figure 12: Ontology Negotiation -- In the Ontology Negotiation architecture,
Alice’s and Bob’s designers play no role to achieve semantic integration. Alice and Bob
must somehow discover the semantic mappings between their ontologies on their own.
Agents generate semantic mappings. Any semantic mappings between agents are
generated automatically; there is no human intervention in the agent interaction (except
during the design of the agent ontologies).
In a sense, this is the direct automation of the Manual Mapping architecture.
The Interlingua and Community architectures are semiautomatic
approximations to Ontology Negotiation insofar as humans are still involved
in some stage of the semantic mapping process.

Direct ontology negotiation may be unavoidable even within the Interlingua
and Community architectures. There will always exist agent-specific
extensions to any shared ontologies, so there may exist direct semantic
mappings between agents that cannot be generated dynamically from the
shared ontologies alone. In the limit, this leads to ontology negotiation for
the agent-specific ontologies.

The challenge of semantic integration is to precisely determine the semantic
intuitions of a human user. In all of the above architectures, complete
semantic integration requires that these intuitions have been formally
specified within the agent ontology. In the case of human-agent integration,
this is not the case; the human is interacting directly with an intelligent agent
without explicitly specifying his or her ontology prior to the interaction.

Semantic integration of humans and agents follows two directions. First, the
human user needs to quickly browse and evaluate the agent’s ontology to
determine whether or not the agent conforms to the user’s intended
semantics for his or her terminology. In the other direction, the agent can
learn the human user’s implicit. If there is an ontological mismatch, the
agent can extend its ontology through the acquisition of new terminology
whose definitions are consistent with the agent’s existing ontology.

This is a relatively new idea. Very little work within the research community
has explored this architecture, and even what has been done has focused
primarily on the related problem of collaborative ontology design (Farquhar,
et al. 1996, 1997; Holsapple and Joshi 2001). It is a difficult problem for
ontology designers to understand another designer’s ontology and
determine whether it is in fact consistent with their own and whether both
designers are making the same assumptions, particularly when the
ontologies are informal and the key information about the ontology is in
natural language text comments.

Human-Agent
Integration
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Technologies

In the preceding section, we considered the challenges that the research
community faces in building self-integrating agents. In this section, we
consider the relevant technologies that will support this endeavor, as well as
identifying areas in which more research is needed.

As we observed in the introduction, one of the sources of semantic
heterogeneity lies in the languages that agents use to represent their world
and the content of their communication acts. There have been several efforts
within academia and industry to develop common languages that can be used
as the basis for ontologies to support semantic integration; in this section, we
will review those languages that are having the most impact on current
practice.

A variety of languages are being used today to specify ontologies. We note
six of the more important of these.

Knowledge Interchange Format and Conceptual Graphs (KIF/CG)
The Knowledge Interchange Format (KIF; Genesereth and Fikes 1992;
Hayes and Menzel 2001) and Conceptual Graphs (CG; Sowa 2000) are
languages designed to support the interchange of knowledge among
heterogeneous computer systems. KIF includes a core language that has the
expressiveness of first-order logic; its syntax and semantics are those of
traditional first-order logic. Most recently, this has been extended to include
extensions that allow sorted formulae for the specification of class
hierarchies, and the specification of the metatheory of KIF within the
language itself. Several inference tools are available for reasoning with
KIF/CG (such as the SNARK theorem prover; Stickel, et al. 1994), although
these have had limited use outside of the academic community.

Although defined separately, both KIF and CG have equivalent
expressiveness and are being standardized together within the International
Standards Organization.

DAML+OIL
The DARPA Agent Markup Language (DAML; Hendler and McGuinness
2001) is based on description logic (McGuinness and Patel-Schneider 1998;
Broekstra, et al. 2000), which is a specialized formal logic that originated in
the KL-ONE system of Brachman and Schmolze (1981). Description logic
is a variation of first-order logic that arises from restrictions to support
reasoning within class hierarchies and to assure decidability of inference.
DAML and another description logic language, the Ontology Inference
Layer (OIL; Fensel, et al. 2001), have been merged to create DAML+OIL
(DAML 2001).

Ontology
representation
Languages
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What distinguishes DAML+OIL from the other ontology representation
languages is that it has been primarily designed for the Semantic Web
(Broekstra, et al. 2000). It is intended to be compatible with emerging Web
standards such as RDFS (Brickley and Guha 2000) to make it easier to use
ontologies consistently across the Web. It is currently being proposed as a
standard within W3C as the WebOnt project1. The charter of this project is
to extend current Web languages to allow the specification of classes and
subclasses, properties and subproperties (such as RDFS), but which extends
these constructs to allow more complex relationships between entities.
However, the community developing WebOnt is currently discussing the
necessary changes and additions to DAML+OIL and consensus in this area
still has to be achived2.

CycL
The knowledge representation language CycL was developed for the
specification of common sense ontologies (Lenat and Guha 1990). CycL
incorporates features of first-order logic but also extends it with notions
from second-order logic and nonmonotonic reasoning; a formal
characterization of CycL has not been published in the research literature.
Although a wide variety of software tools have been developed for inference
and ontology design, the application of CycL has been restricted to the Cyc
system and has not had widespread public use. However, this could change
with the release in 2002 of a public version of the upper Cyc ontology.

OKBC
OKBC (Chaudhri, et al. 1998) is an API for knowledge servers designed to
enable heterogeneous knowledge representation systems to provide a
standard interface for use by client systems. The OKBC specification
includes a frame language that is used as an ontology representation
language in multiple systems, including Ontolingua (Farquhar, et al. 1996),
which is described below. The semantics of the frame language is specified
by providing a mapping into first-order logic. That mapping also enables
ontologies represented in the frame language to be analyzed and used by
theorem provers and other automatic reasoners.

EXPRESS
EXPRESS (Schenk and Wilson 1994) was initially designed to support
information modeling, particularly the information required to design, build,
and maintain products. Although EXPRESS generalizes earlier approaches
such as IDEF1X (Menzel 1997), the major drawback for specifying
ontologies for semantic integration is that EXPRESS does not have clear
declarative semantics. This makes it difficult to verify ontologies that use
EXPRESS and also makes it difficult to determine the consistency of
semantic mappings between ontologies. There are also no automated
                                                
1 http://www.w3.org/2001/sw/WebOnt/
2 http://www.aifb.uni-karlsruhe.de/~sst/is/WebOntologyLanguage/
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inference tools capable of reasoning with EXPRESS beyond checking for
data integrity constraints.

The EXPRESS language has been accepted as an international standard
(ISO 10303) and is widely used by other ISO standards, particularly the
STEP standard for product data exchange.

Unified Modeling Language (UML)
The primary application of UML (Fowler and Scott 1999) for ontology
design is in the specification of class diagrams for object-oriented software.
However, UML does not have clearly specified declarative semantics, so it is
not possible to determine whether an ontology is consistent or to determine
the correctness of semantic mappings between ontologies. More recently,
UML has been supplemented with the Object Constraint Language (OCL;
Warmer and Kleppe 1999) that is closer to offering a semantics similar to
first-order logic, and there is some research (Cranefield and Purvis 1999) on
the suitability of OCL for more rigorous ontology representation.

F-Logic
Frame-Logic (Kifer, et al. 1995), like the OKBC frame language, provides a
declarative language that captures the structural aspects of object-oriented
and frame-based languages (such as complex objects, encapsulation, typing,
and inheritance).

Language Declarative
Semantics

Completeness Expressiveness Decidable?

KIF/CG Yes Yes First-order logic No

DAML+OI
L

Yes Yes Description logic Yes

CycL Yes No Beyond first-order logic No

OKBC Yes No Restriction of first-order
logic

Yes

EXPRESS No N/A N/A N/A

UML No N/A N/A N/A

F-Logic Yes Yes Restriction of first-order
logic

Yes

Table 2: Ontology representation languages.
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Given this variety of languages, how can ontology designers select the
appropriate language for their needs? What properties should a formal
language possess if it is to be adequate for specifying ontologies to support
semantic integration?

The language should have declarative semantics. This may seem to be stating
the obvious given the earlier discussion, but the fact is that ontologies that
fall along the informal end of the semantic continuum are written in
languages that do not have declarative semantics. Consequently, there is no
notion of satisfiability or consistency, and hypothesized semantic mappings
cannot even be verified. Semantic integration in such cases becomes a
subjective exercise validated only by the opinions of the human designers
involved in the integration effort.

The language should be based on a sound and complete logic. A logic is
sound if all of the inferences drawn from some theory using some proof
procedure are sentences that are satisfied by all models of the theory. A logic
is complete if any sentence that is satisfied by all models of a theory can be
deduced from the theory using some proof procedure. First-order logic
satisfies these properties, as do more exotic logics such as infinitary logic
(that allows infinite formulas), modal logic, intuitionistic logic, and relevance
logic. However, second-order logic1 is incomplete—there exist second-order
theories for which a sentence that is satisfied in all models of the theory
cannot be deduced from the theory using a proof procedure. In such a case,
automated inference cannot guarantee that the intended semantics of the
ontology are preserved.

The ontology representation language should be expressive enough to
capture the intended models corresponding to the human designer’s
intuitions. This criterion primarily addresses languages that are restrictions
of first-order logic. Beyond first-order logic, there is a tradeoff between this
criterion and the completeness of the language. There are concepts (e.g.
connectedness of graphs, Peano arithmetic) that cannot be defined within
first-order logic and require second-order logic. However, since second-
order logic is incomplete, automated inference would in general be unable to
reason with such concepts.

The decidability2 of the ontology representation language is another
important criterion. One of the motivations for description logics is to
provide a knowledge representation language in which inference is
guaranteed to be decidable (Horrocks, et al. 1999). First-order logic, on the
other hand, is in general not decidable.

                                                
1 In first-order logic, we can only quantify over elements in the domain of interest. In

second-order logic, we can quantify over relations, functions, and any set of elements in
the domain.

2 A language is decidable if there does exista a universal algorithm to determine in all
cases whether or not one sentence is a logical consequence of a set of sentences.

Criteria for
Choosing
Ontology
representation
Languages
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Applying the preceding criteria to the languages in Table 2, we can get a
sense of future directions for research in ontology representation languages.

Expressiveness vs. Decidability
The inference required to determine whether or not the terms in two
ontologies are semantically equivalent is in general not decidable. One
approach is to restrict ontology design to the use of tractable representation
languages rather than more expressive languages. This has been one of the
primary motivations behind the specification of description logics, and more
recently, of DAML+OIL. However, this approach leads to a tradeoff
between tractable reasoning and allowing the existence of unintended
models—expressive languages can eliminate unintended models, but such
languages are in general undecidable. There is currently little research being
done on identifying the expressiveness that is required in order to axiomatize
the intended models in the problem domains of interest.

We will only be able to resolve the tradeoff between expressiveness and
decidability empirically. We currently do not know what expressiveness is
required in order to capture the semantic intuitions in the domains of
interest. As we will see in the next section, there exist decidable first-order
ontologies even though first-order logic is not decidable, and we do not yet
have a clear idea of the ontologies that we will need.

The expressiveness of the ontology representation language can only be
evaluated empirically. We do not know what expressiveness is required to
axiomatize the concepts in ontologies for various domains. Testbed
environments will be needed to evaluate the different ontology representation
languages with respect to the intended applications.

Convergence to a single language
It is doubtful that there will be convergence to a single ontology
representation language. The primary factor in language adoption will be
influenced by the intended applications of the ontologies themselves. If the
design and reuse of DAML ontologies becomes widespread on the Semantic
Web, DAML+OIL will be the dominant ontology representation language
for such applications. However, it is uncertain that this would lead to the
adoption of DAML+OIL for domains such as manufacturing or logistics if
the language is not expressive enough to capture the intended semantics of
the relevant concepts. Related to this is the acceptance of ontologies within a
particular community or industry sector; for example, so long as the CAD
vendors and major automotive manufacturers use the STEP ontology, people
will be using the EXPRESS language.

Will we need new languages?
Current ontology representation languages that meet the above criteria are all
either equivalent to first-order logic or a restriction of first-order logic. It
may be the case that the expressiveness criterion forces us to move beyond
these languages. Possibilities include modal languages (to capture concepts
such as knowledge, belief, and obligations) or even default logics to capture
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concepts based on natural kinds and to enable ontologies to include
descriptions of “typical” instances of a class. As with the
expressiveness/decidability tradeoff, this can only be determined empirically
through testbed implementations.

Translation among Languages
We can consider agent integration as having a syntactic and a semantic
component. The semantic component maps concepts in one ontology to
concepts that intuitively have the same meaning in another ontology. The
syntactic component is concerned with the underlying representation
language that is used to specify both the ontologies and the domain theories
that use the ontologies. Even if the challenges of specifying semantic
mappings between agent ontologies are addressed, there is still the problem
of translating between the different ontology representation languages used
by the agents (Wilson 1996). Some progress has been made for languages
that do have an explicit model theory (such as KIF/CG, DAML+OIL, and
CycL). However, for languages such as EXPRESS and UML that do not
have an explicit model theory, the problem of translation is much more
formidable. There are also problems in translating between two properly
formal languages if their underlying model theories are different. Translating
between Ontolingua, which is based on KIF, and Slang (Waldinger, et al.
1996), which is founded on category theory, gave rise to uncertainty even
when performing the translation manually (Uschold, et al. 1998).

A distinction must also be made between the languages used to specify
ontologies and the languages that are used in the implementation of an
agent-based system. Regardless of whether the ontologies have been
specified using KIF, OKBC, DAML, or CycL, the agents themselves may be
using applications that use XML or a variety of database languages. Much
of the work that has been done on the integration of heterogeneous
information resources (e.g., InfoMaster; Duschka and Genesereth 1997)
addresses this relationship between ontologies and applications. Likewise,
many of the translator tools supported within the Ontolingua library were
actually translators between KIF and the knowledge representation
languages used within various artificial intelligence applications, such as
LOOM and Prolog (Gruber 1991).

Ontologies for Semantic Integration

A wide variety of ontologies are being developed within industry,
government, and academia. Many of these ontologies are being used as
domain-specific agent ontologies (Ashlander 2000; Dalianis and Persson
1997; Smith and Becker 1997), often within rather narrow contexts.
However, some of these ontologies are capable of supporting integration
either as an interlingua ontology or as community ontologies. An overview
of ontologies that are being designed within the artificial intelligence and
information modelling research communities, together with some of their
relevant characteristics, is given in Table 3.
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Process Specification Language (PSL)
The Process Specification Language (PSL; Menzel and Gruninger 2001;
Schlenof, et al. 1999; Cutting-Decelle, et al. 2000) has been designed to
facilitate correct and complete exchange of process information among
manufacturing and business software systems. Included in these
applications are scheduling, process modeling, process planning, production
planning, simulation, project management, workflow, and business process
reengineering1. The PSL Ontology is modularly organized into PSL-Core
and a partially ordered set of extensions to this core theory. The axioms of
PSL-Core were directly incorporated from earlier work with the Process
Interchange Format (PIF; Lee, et al. 1998).

PSL is a New Work Item (ISO 18629) within Joint Working Group 8 of
Sub-committee 4 Industrial data and Sub-committee 5 Manufacturing
integration of Technical committee ISO TC 184, Industrial automation
systems and integration. Part 1 of the standard has been accepted as a
Committee Draft (ISO18629-1). All theories within the PSL Ontology that
are currently being standardized have been verified with respect to the
intended semantics of their terminology.

Standard for the Exchange of Product data (STEP)
STEP (ISO 10303) has been standardized within the International Standards
Organization to support interoperability among manufacturing product
software (such as CAD systems and process planning software) throughout
the entire product lifecycle. STEP provides standard data definitions for
geometry (wire frame, surfaces and solid models), product identification,
product structure, configuration and change management, materials, finite
element analysis data, drafting, visual presentation, tolerances, kinematics,
electrical properties, and process plans. STEP is currently being
implemented in the aerospace, automotive, shipbuilding, building design, and
electronics industries.

MANDATE
MANDATE (ISO 15531) is being standardized by the same group as
STEP. Specified in EXPRESS, it is primarily concerned with manufacturing
resource data.

Workflow Process Description Language (WPDL)
WPDL (Sharp and McDermott 2001) has been designed within the
Workflow Management Coalition (Fischer 2001) as an interlingua among
workflow software. It is specified using a syntax peculiar to the effort, and
its semantics are informal.

                                                
1 [Schlenoff et. al. 1999] describes an implementation of translators that used PSL to

exchange process information between the process modeling tool ProCap (from KBSI)
and the scheduling application ILOG Schedule.

Survey
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Standard Upper Ontology (SUO)
The Standard Upper Ontology ([Pease et. al. 2001]) is limited to concepts
that are generic, abstract and philosophical and therefore are general enough
to address a broad range of domain areas. Concepts specific to given
domains are not included; however, the SUO provides a structure and a set
of general concepts upon which domain ontologies (e.g., medical, financial,
engineering, etc.) can be constructed. Application developers can define new
data elements in terms of the common generic ontology and thereby gain
some degree of interoperability with other conformant systems. The SUO is
currently a standards project within IEEE (http://suo.ieee.org); one proposal
for an initial set of concepts is discussed in [Niles and Pease 2001].

DAML Ontologies
Ontologies to support the Semantic Web are being developed using the
DARPA Agent Markup Language (DAML). A library of approximately 160
ontologies is available at www.daml.org/ontologies/. The most important of
these ontologies is DAML-S (McIlraith, et al. 2001), which is an upper
ontology for services that includes concepts for profiles, processes, and time.
In this context, services refer to Web sites that do not merely provide static
information but allow one to effect some action or change in the world, such
as the sale of a product or the control of a physical device. Thus the DAML-
S ontology must support automatic Web service discovery, invocation,
composition, and interoperation.

Cyc
The Cyc ontology (Lenat and Guha 1990; Lenat 1995) has been the basis
for the development of an extremely large knowledge base to capture
commonsense knowledge. The range of concepts covered is quite broad,
ranging from domain-specific knowledge to generic knowledge (such as
objects and time). The Cyc ontology is divided into smaller modules known
as micro theories that are able to support different ontologies that may be
mutually inconsistent.

The Cyc ontology is proprietary, although more recently, the upper levels of
its class hierarchy have become public. This upper level ontology was used
in the DARPA project on High Performance Knowledge Bases (Cohen, et
al. 1999).

Ontolingua
The Knowledge Systems Laboratory at Stanford University created an
ontology development environment called Ontolingua (Farquhar, et al. 1996)
that provides a library of modular reusable ontologies, such as (Gruber and
Olsen 1994; Chaudri, et al. 1998). The ontology engineering tools in
Ontolingua are oriented toward the design of ontologies by assembling and
extending ontologies that have previously been submitted to the ontology
library (Farquhar, et al. 1997). More recently, several tools have become
available that more directly support the merging of multiple ontologies in the
library (McGuinness, et al. 2000). Ontolingua provides an ontology
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representation language that is a combination of the OKBC frame language
and KIF.

Dublin Core
The Dublin Core (Weible and Miller 2000) began with the goal of
developing extensible, consensus-built metadata standards for search and
retrieval across different subject areas. The primary achievement to date is
the Dublin Core Metadata Element Set (DCMES), a set of 15 terms for
describing resources. These are presented in full at (DCMI 1999). The
metadata elements include such things as title, creator (not author), subject,
date, type, and format. They are defined using the existing standard for
describing data elements (ISO/IEC 11179) (ISO11179). This effort has
evolved beyond a basic element set to embrace new communities and subject
areas. The Dublin Core Metadata Initiative has become a home for a broad
spectrum of subject experts and metadata practitioners, built on community
trust and open consensus building, and motivated by a desire to build a Web
of greater coherence. In addition to providing international forums for the
development of vendor-neutral vocabularies, the DCMI is promoting the
development of tools and infrastructure to support high quality metadata
applications on the Internet, including

o a semantic registry to store and search declared meanings
and their relationships to other meanings; and

o an open source software repository to provide the tools for
creating, editing, managing, and navigating metadata.

TOVE
The TOVE (TOronto Virtual Enterprise) project (Gruninger and Fox 1998;
Gruninger 1997) created an integrated suite of ontologies to support
enterprise engineering. Since this must be a shared terminology for the
enterprise that every application can jointly understand and use, the
ontologies span knowledge of activity, time, and causality (Fox, et al. 1995;
Fadel, et al. 1994; Kim and Fox 1995; Tham, et al. 1994).

The TOVE ontologies were developed in cooperation with several companies
and have been applied to the design and analysis of enterprise models within
supply chain management, project management, and business process
engineering. In particular (Atefi 1997) discusses the application of the
TOVE ontologies to the analysis of customer relationship management
processes within IBM Canada. In other work, the ontologies were used to
model the supply chain of BHP Steel (Australia) and assist in the
construction of supply chain management scenarios.

Enterprise Ontology
The Enterprise Project at the University of Edinburgh (Uschold, et al. 1998)
supports an environment for integrating methods and tools for capturing and
analyzing key aspects of an enterprise, based on an ontology for enterprise
modeling. This ontology (the Enterprise Ontology) has five top-level classes
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(Meta-Ontology, Activities and Processes, Organization, Strategy, and
Marketing) for integrating the various aspects of an enterprise. The
Enterprise Ontology is semi-formal—it provides a glossary of terms
expressed in a restricted and structured form of natural language
supplemented with a few formal axioms using the Ontolingua representation
language. The Enterprise Ontology has been published through the Stanford
University KSCl Ontolingua Server.

Lloyd's Register has used the Enterprise Ontology for more effective
modeling and re-engineering of business processes for strategic planning.
IBM UK intends to exploit the Enterprise Ontology in modeling its own
internal organization as well as providing technical input via its Business
Modeling Method BSDM (Business Systems Development Method). The
Enterprise Ontology is an ongoing source of inspiration for projects both
academic and commercial that require models of concepts in this domain. To
our knowledge, it is never imported or translated into a target language in
full. Rather, it is perused and picked over for ideas and concepts that may be
useful in the new context.

Unified Enterprise Modeling Language (UEML)
This is a new project whose goal is to provide a common language suited for
enterprise modeling (Kosanke and Nell 1997). It is intended to provide
business users with a standard interface to software for enterprise modeling,
analysis, and simulation. It also aims to provide a neutral language for
enterprise model exchange.

Ontology Semantic
Continuum

Integration
Architecture

Language

PSL Formal semantics
for automated
inference

Interlingua for manufacturing
process software

KIF

SUO Formal semantics
for automated
inference

Community upper-level
ontologies

KIF

STEP Informal semantics Interlingua for manufacturing
product software

EXPRESS

Cyc Formal semantics
(although the public
upper level is a
taxonomy)

Community ontologies for
commonsense reasoning

CycL

MANDATE Informal semantics Interlingua for manufacturing
resource management

EXPRESS

Dublin Core Implicit semantics Interlingua for metadata documentation

Ontolingua Formal semantics
for human
processing

Community ontologies OKBC + KIF
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processing

DAML Ontologies Formal semantics
for automated
inference

Community ontologies for
Semantic Web

DAML+OIL

TOVE Formal semantics
for automated
inference

Community ontologies for
enterprise integration

KIF

Enterprise
Ontology

Formal semantics
for human
processing

Community ontologies for
enterprise integration

KIF

UEML Informal semantics Interlingua for enterprise
modeling

documentation

OMG Informal semantics Community ontologies UML

ISO 11179 Implicit semantics Interlingua for metadata documentation

WPDL Implicit semantics Interlingua for workflow
software

documentation

Table 3: Summary of ontologies to support integration.
However, there are still some shortcomings in current work:

Lack of coordination among ontology efforts
There is no coherent research program to coordinate the design, evaluation,
and comparison of ontologies. An exception ot this is the community effort
that went into the development of the Process Specification Language and its
predecessor, the Process Interchange Format (Lee, et. al. 1998). Two of the
best examples of collaborative ontology development (Ontolingua and the
DAML ontologies) have been built by independent submission of
ontologies by many different groups. Although this is desirable from the
perspective of the users (who are building ontologies that they need), the
result is typically a set of multiple overlapping ontologies for the same
domain, with no rational way of comparing the advantages or disadvantages
of each ontology. In the past, more emphasis has been placed on ontology
mapping techniques rather than on the design of the ontologies themselves.
However, we cannot assume that ontology mapping techniques alone will
solve the semantic integration problem. If the agent ontologies are not rich
enough to capture the semantic intuitions of the users, then no mapping
technique will be able to supply these intuitions.

Ontologies are not being used within integration scenarios
Many agent-based systems are being built without explicit ontologies,
making the semantic integration problem even more daunting. In particular,
much of the work on ontology negotiation (Bailin 1999) is being developed
in the absence of concrete agent ontologies. Algorithms for ontology

Analysis
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mapping are illustrated with toy examples, rather than using ontologies that
have already been specified within the research community.

Current research with the Interlingua architecture is being done within the
standards community using STEP, MANDATE, and ISO 11179; however,
these standards are not based on explicit ontologies and do not provide an
explicit semantics for their terminology. Consequently, when errors are
discovered within implementations of translators for these standards, people
cannot determine whether the problem is with the input files, the translator,
or even the standard itself.

Existing ontologies are not being reused
Although the generic ontologies are more reusable, they may have limited
utility in a given domain of application. On the other hand, domain-specific
ontologies are often too specialized and cannot be reused by other agents.
For example, the reuse of ontologies from the Ontolingua library has been
limited. This lack of reusability is particularly problematic, since this has
always been one of the promises of ontological engineering (Capellades
1999; Uschold, et al. 1998; Pinto 1999).

We need more ontologies!
There is also a lack of direction in terms of the domains that are being
selected for ontology development. Ontology design needs to be “pulled”
by applications such as logistics and autonomous mobile systems. Within
the context of this report, more ontologies must be designed in the domains
relevant to warfighter applications.

Nonclassical Ontologies
All ontologies being designed today (except possibly Cyc; Lenat and Guha
1990) are restricted to the classical logics, such as first- and second-order
logic. There will also be problems with ontologies for concepts involving
defaults (Reiter 1980) and natural kinds (Rosch 1973). In the case of
defaults, it will be necessary to develop an entirely different methodology for
verifying an ontology. For example, with ontologies that are based upon
monotonic logics (e.g., first-order logic, modal logic, temporal logic), a set of
axioms can be falsified by providing a single counterexample, that is, some
sentence that is consistent with the axioms but which should not be satisfied
by any intended model. However, in the case of a default theory, such a
counterexample could be considered an exception. The design challenge
then becomes one of distinguishing between exceptions and truly different
intended semantics.

Decidability
Another issue is based on the distinction between the decidability of a logical
language and the decidability of an ontology whose axioms are written using
the language. First-order logic is not decidable, which means that there exist
ontologies written in that language that are not decidable. However, it does
not mean that all ontologies written in first-order logic are undecidable; in
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fact, there exist decidable first-order theories, and hence there exist
ontologies whose axioms are written in first-order logic, and inference using
these theories is decidable. As with the preceding approach, there is a lack of
research into the tractability of existing ontologies.

Semantic Markup

As noted above, semantics are an important and critical challenge that must
be met to achieve semantic integration on a wide scale, especially in the
Semantic Web context. There are many good statistical techniques from the
Information Retrieval area for processing information in the absence of
explicit semantic specifications, as well as much commercial activity being
done by Web portal and search providers. These techniques can do an
excellent job of putting semantically similar items in the same bucket. They
may not attempt to define the semantics of a bucket, nor is there a fine-
grained markup for individual terms or concepts. Much of the research
published which uses semantic markup does not address the question of
how is it created—typically it is the human expected to create it (Decker, et
al. 1999; Jasper and Uschold 2001). Commercial tools (Voquette 2001) are
available that support the automatic creation of semantic markup by using a
pre-existing ontology.

One promising idea that only applies to newly authored content is described
in (Hendler 2001): “markup for free”. A simple example would be if you
were creating a PowerPoint presentation and needed some clipart. You select
an icon of a computer. If the icon was already placed into a semantic
category, then the presentation could automatically be marked up with that
category. There are many challenges that must be addressed with this
approach, but it deserves more research.

Version 5.0 of Adobe Acrobat includes an important new development in
semantic markup: the eXtensible Metadata Platform (XMP). It is heralded as
"the first major implementation of the ideas behind the Semantic Web, fully
compliant with the specification and procedures developed by the World
Wide Web Consortium” (Adobe 2002). It is an XML framework for Adobe
products, providing the capability for storing document metadata. Other
applications can access the metadata using an open-source license. The
metadata is based on RDF and uses Dublin Core tags. It remains to be seen
how significant this will be.

Ontology Mapping

It is rather obvious from the semantic integration architectures that ontology
mapping plays a critical role—of comparable importance to the design of the
ontologies themselves. In fact, much of the research within the ontology
community has been devoted to ontology mapping, since the techniques can
be applied to arbitrary ontologies. As with the characterization of the
semantic integration architectures, different approaches to ontology mapping
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can be distinguished by the degree of automation in the generation and
testing of proposed semantic mappings.

In a sense, ontologies reduce the problem of semantic integration to the
problem of ontology mapping—the preservation of semantics between
agents is equivalent to specifying mappings between their ontologies.
Preliminary work in the formal characterization of ontology mapping
(Ciociou and Nau 2000; Euzanat 2001; Stuckenschmidt and Visser 2000;
Wache, et al. 2001) has focused on generalizing results on relative
interpretation from mathematical logic (Enderton 1972). On the one hand,
this has the advantage of being general enough to be applied to any logical
theory; however, the results are often too weak to be applied directly to
current practice in ontology mapping. One notable exception is OntoMorph
(Chapulsky 2000), in which the relationship between two specific constructs
in different ontology languages is described with a rule that specifies the
transformation from one to the other. Also, approaches based on description
logic (Calvenese, et al. 1998) are closer to being implemented and tested
against concrete ontologies, particularly in the context of the DAML
program.

Another weakness of the current theoretical work is that it primarily provides
a declarative characterization of semantic mappings and has not yet moved to
the analysis of algorithms to generate or test hypothesized mappings. The
algorithms that have been proposed for ontology alignment (such as
SMART, Noy and Musen 1999; PROMPT, Noy and Musen 2000; Anchor-
PROMPT, Noy and Musen 2001; and FCA-Merge, Stumme and Maedche
2001) have not been analyzed from a theoretical perspective (although Klein
2001 does give some informal analysis in the comparison of these various
algorithms).

Alternative approaches to ontology mapping are based on the application of
category theory (MacLane 1971), in which one specifies classes of objects
and the operations among these objects that preserve their properties. Much
of this work uses the notion of Information Flow from (Barwise and
Seligman 1997) as the framework in which to specify semantic mappings
between distributed agents. Of particular interest in this direction is the work
of (Kent 2001), which applies category theory to the design of the Standard
Upper Ontology. One drawback is that these approaches currently suffer
from a lack of implementations; while there are many inference systems for
first-order logic that can be used to implement the ideas in (Ciociou and Nau
2000) and (Euzanat 2001), there are few software tools available that support
automated reasoning with category theoretic concepts.

We earlier observed that the current state-of-the art is manual mapping
among the ontologies that are implemented in various applications. The
drawback of this approach, of course, is that it does not support automated
semantic integration because the agents themselves are not generating any
new semantic mappings; however, the same techniques can be applied to the
problem of mapping agent ontologies to interlingua ontologies and
specifying the translation definitions between agent and interlingua
ontologies prior to agent interaction.
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One family of approaches to mapping support uses concept repositories
such as WordNet (Miller 1995; Fellbaum 1998), Boeing Thesaurus (Clark,
et al. 2000) and MetaNet (Hunter 2001; Niles and Pease 2001). The
semantics of the concepts in these and other similar resources are informally
specified using either English text, or informally defined relationships (e.g.,
broader-than, narrower-than) between other concepts. The problem can be
characterized as follows: There are two or more sets of terms where there is
a substantial overlap in semantic content. The terms in one set need to be
mapped to terms in the other sets. When such sets of terms are very large or
it is too time-consuming for the human to do this, we require computer
assistance in the form of mapping support tools. For a given term, the job of
the mapping assistant is to find suggested mappings that the user may then
confirm. This can work in various ways. One way is to use the concept set
as a neutral intermediary between the different sets of terms. For simplicity,
let us limit this discussion to the situation where there are only two sets of
terms that need to be mapped. Auto-tagging technology is used to relate
terms from each term set to one or more terms in the neutral term set which
are likely candidates for being mapped to the given term. Suggested
mappings are produced by finding terms that map to the same one or more
terms in the neutral term set. WordNet could be used this way, as well as
any thesaurus or taxonomy. If the neutral term set has good English
definitions associated with each term, then it is easier for the human to make
decisions.

The hypothesized semantic mappings generated in this way are not
guaranteed to be complete, or even correct, but this is why they are semi-
automatic—they allow the human designer to focus on the testing and
evaluation of the mappings, while the tools propose possible mappings.

The other family of mapping support tools provides interactive environments
that exploit the relationships within the ontologies themselves (McGuinness,
et al. 2000). Rather than use the superficial names of relations, these tools
consider subclass/superclass relation and domain/range of slot values for
concepts within the ontologies. Such tools include Chimaera (McGuinness,
et al. 2000) and PROMPT (Noy and Musen 2000).

More general approaches provide software tools that support the
specification of rules for combining and integrating ontologies. Within
SHOE (Heflin and Hendler 2000), for example, terminological differences
can be mapped using simple equivalence rules, while scoping rules allow
mapping a category in one ontology to the most specific category that
subsumes it in the other ontology.

Semiautomatic approaches move beyond software environments by
specifying algorithms that generate proposed mappings between ontologies
(PROMPT, Noy and Musen 2000; Anchor-PROMPT, Noy and Musen
2001; FCA-Merge, Stumme and Maedche 2001; OBSERVER, Mena, et al.
1996, Kashyap and Sheth 1996). As with the manual approaches, no
mechanisms are provided to test the consistency and correctness of any of
the proposed mappings.
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OBSERVER is an interesting system in that it uses a description logic-based
reasoning engine to automate a kind of merging of two ontologies. It is
semi-automatic, in that it requires a human to first specify hyponym
(subclass), hypernym (superclass), and synonym links between the two
ontologies. The reasoner merges the two, getting rid of redundant links and
joining synonym concepts. This is similar to the approach used by Anchor-
PROMPT. OBSERVER also is unique in that it is capable of generating
arbitrary mapping links on the fly, rather than having to pre-specify them
beforehand. Even though this work is a few years old, it seems to be right at
the leading edge.

Similar techniques are used in the MetaNet project for generating semantic
mappings; however, the representation they use is mainly term-based,
whereas OBSERVER uses a richer attribute-based representation.

The models for many ontologies often have the same structure as various
classes of graphs. Since semantic integration is based on the isomorphism
among the models of the ontologies, graph isomorphism algorithms provide
another technique for automatically postulating semantic mappings between
ontologies.

Ontology negotiation requires more automated support for ontology
mapping, in which the agents must both generate and test hypothesized
semantic mappings between ontologies. Consequently, inference systems
play a key role in automatic ontology mapping. Within the Interlingua
architecture, inference systems are needed to automatically generate semantic
mappings directly between the agent ontologies. Within the Ontology
Negotiation architecture, inference systems are required to automatically test
the consistency of hypothesized semantic mappings. However, there has
been little collaboration between the ontology community on the one hand,
and the theorem proving and constraint satisfaction communities on the
other. There exist a wide range of theorem provers (Stickel, et al. 1994) and
constraint satisfaction systems (Marriott and Stuckey 1998), but for the
most part they have been used on toy problems or strictly mathematical
theories rather than using the axioms from designed and implemented
ontologies. The limited application of theorem proving to ontologies has
been in ontology verification (which we will examine in detail in the next
section); there has been no work in applying theorem provers to the
problems of generating semantic mappings in ontology translation.

Given the complexity of generating and testing semantic mappings, heuristic
search strategies through the space of possible semantic mappings are
required. One approach is to use informal or partially shared ontologies as
initial hypotheses or as heuristics that prune the search tree by avoiding
known semantic mismatches. Bailin (Bailin 1999; Truszkowski and Bailin
2001) uses algorithms based on constraint relaxation techniques to identify
the potential mappings. The work of Yun Peng (Peng, et al. 2002) uses
probabilistic reasoning to select the most likely mapping. Finally, there are
approaches that approximate the semantic mapping (Ciociou, et al. 2001;
Stuckenshmidt and Visser 2001).
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There is no easy way to map at the semantic level. In the short term, the
emphasis is likely to be on tool support to enable humans to more quickly
and accurately specify pre-defined mappings that are used at runtime to
determine what a given term means with respect to a given agent’s ontology.
In the longer term, work will proceed which will enable agents to semi-
automatically determine the meaning of new terms encountered through
interactions with other agents.

Supporting the Ontology Lifecycle

As we discussed earlier, building ontologies is difficult, time-consuming, and
expensive,. Much research has been done within the ontology community to
support the design, acquisition, verification, and deployment of ontologies.
We are already beginning to see a proliferation of ontologies, and we will
require sophisticated systems for managing them. This will include support
tools for the whole ontology lifecycle.

There are several methodologies for building ontologies:

•  OntoClean (Welty and Gaurino 2001; Gangemi, et al. 2001; Guarino
and Welty 2000)

• Competency questions (Gruninger 1996; Gruninger and Fox 1994)

• “Middle-Out” design (Uschold and Gruninger 1996)

• Assembly and extension of multi-use ontology modules (Farquhar, et al.
1997)

• METHONTOLOGY (Gomez-Perez 1998; Fernandez, et al. 1997)
In addition, (Noy and Hafner 1997) gives a review of the methodologies
implicit in the design of various ontologies such as Cyc and TOVE.
However, there has been little rigorous evaluation of these methodologies
beyond an informal summary of their advantages and disadvantages. Are
different methodologies better suited to particular domains or applications?
Do generic ontologies require different techniques than more domain-
specific ones? What is the relationship between design methodologies and
the ontology alignment/merging techniques discussed earlier?

There also have been no serious attempts to create all-encompassing
methodologies that combine the best features of existing methodologies.
One exception to this is an attempt to merge the methodologies used to
develop the TOVE ontologies and the Enterprise Ontology (Uschold 1996).
This was just a small first step. Much more needs to be done. There is a new
project starting up called Quality-based Ontology Development (Horrocks
2001), which will attempt lay firmer theoretical and empirical foundations for
work in this area.

More software support for the ontology design methodologies is needed.
Early examples are tools from Stottler-Henke and Associates (that
implements the informal phases of the methodology in Gruninger and Fox
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1994) and OntologyWorks (that automates consistency checking of
ontologies once their formal meta-properties have been expressed in the
OntoClean methodology of Welty and Guarino 2001).

A new area has emerged in the past few years—using automated techniques
to build ontologies.

Rather than acquiring the ontology of an agent, preliminary work is being
done to support ontology learning by agents as one phase of ontology
negotiation (Bailin 2001; Williams and Ren 2001). In this approach, agents
automatically acquire the ontologies of other agents by generating example
queries and then using inductive inference to build an ontology based on the
answers to these queries. Other approaches include the use of text-
processing techniques and/or machine learning techniques to automatically
generate a ‘first draft’ of an ontology from a corpus of documents.
Techniques include lexical entry and concept extraction, hierarchical concept
clustering, dictionary parsing, and association rules. For good recent work in
this area, and plenty of further references, see (Velardi, et al. 2001; Maedche
and Staab 2001).

In the near-term, many agent systems will be extensions of legacy software,
such as planning, scheduling, and logistics management systems. We will
need software tools and methodologies to identify and axiomatize the
implicit ontologies in existing agent systems.

Given the specification of ontologies within a logical language, one aspect of
ontology verification rests upon consistency checking of the ontology’s
axioms using automated inference systems. As such, this task can be done
with arbitrary inference engines (such as Snark; Stickel, et al. 1994),
although several tools exist to perform more domain-specific checking (such
as the tools associated with the Chimaera environment McGuinness, et al.
2000). There are also several tools based on description logics (Shiq and
OilEd; Horrocks, et al. 2001) that perform consistency checks on the
classification and implicit subsumption relationships within the ontology.

The evaluation and comparison of interlingua and community ontologies
revolves around the identification of unintended models (interpretations that
are not shared by all participating agents). This suggests an experimental or
empirical approach to the evaluation of the ontology in which we attempt to
find sentences that are true in all intended models of the ontology’s axioms
but false in an unintended model of the axioms. Such sentences were called
competency questions in (Gruninger and Fox 1994) and (Gruninger 1996).
If the ontology designer can find a model of the axioms that does not
correspond to an intended model, then he or she has provided a
counterexample to the axioms. In response, the designer can either redefine
the scope of the class of intended models (i.e., we do not include the
behavior within the characterization of the structures) or modify the axioms.

The distinction between intended and unintended models of an ontology is
drawn only with respect to a particular domain; testbed implementations are
therefore needed in order to evaluate ontologies with respect to their intended
applications.
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Even if all of the above technologies are used to build ontologies, we still
face the challenge of correctly implementing agents that conform to these
ontologies. In a sense, this is the converse of ontology design, since we are
beginning with the ontology and using it to implement agents whose
behavior is constrained by the ontology. For work that is being done to
address this problem, see (Uschold, et al. 1998; Barley, et al. 1997), and
(Tansley and Hayball 1993).

Ontology management systems are motivated by the opinion that global, or
even enterprise-wide, ontologies may forever remain unrealized. Therefore
we must move away from single-ontology views and use multiple (even
conflicting) ontologies. In this view, modular ontologies should be built
from merging and reuse of existing ontologies, and new or existing
ontologies may need to be merged together or integrated with other
ontologies.

The ability to support both the specialization of ontologies as well as the
existence of mutually inconsistent ontologies is a critical requirement for an
ontology management system. For example, the PSL Ontology is organized
into PSL-Core (which incorporates the earlier work from the Process
Interchange Format project) and a partially ordered set of extensions. These
extensions may not be conservative (i.e., they may falsify sentences that were
consistent with the Core theory), and the extensions may not be mutually
consistent with each other (e.g., one extension may make a commitment to
discrete time while another makes a commitment to dense time).

An alternative approach is to exploit the class hierarchy within the
ontologies. The Process Handbook (Malone 1994; Lee and Malone 1990)
and Process Interchange Format projects (Lee, et al. 1998; Polyak, et al.
1996) were among the first to introduce the notion of partially shared views,
which support partial translation between ontologies by identifying the most
specific class that is shared between the ontologies. This also supports the
integration of generic ontologies with more domain-specific ontologies.

Commercial ontology tools are just starting to arrive. Unicorn is focusing on
industrial strength ontologies for enterprise usage. Their product, Unicorn
Coherence™, in its beta test phase in early 2002, is a platform for authoring
full ontological models and applying the models to deriving transformations
between disparate data formats (such as relational schema, XML Schema,
and APIs). Key features include

•  enterprise quality support for access control, version control, and
collaboration in authoring ontological models

• ability to evolve a model with guaranteed backward compatibility

• mapping ontology model to relational, XML and LDAP schemata

•  automatic export of queries/transformations to map between relational,
XML, and LDAP records/documents.
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Another product offering is from Sandpiper Software. They have partnered
with Rational Software, and are in the process of building a Rational Rose
add-in to support ontology modeling. It extends UML/Rose to provide
constructs that support visual modeling of ontology elements, essentially
equivalent to Ontolingua or OKBC style definitions. It will have an axiom
editor that will support a simplified version of KIF. They also plan to export
OKBC-compliant knowledge bases out of Rose, as well as to generate XML
schemas and other constructs as required by their customers.1

Agent Capability Matching

To support self-integration, agents must identify potential collaborating
agents and then automatically determine whether semantic integration is
possible with these agents. To achieve self-integration, agents must therefore
advertise their capabilities and match the capabilities of other agents to
achieve goals associated with the required task.

In self-integration, each agent also has some comprehension of its role
within the task that the entire set of agents is achieving. There seem to be two
approaches to this problem. In the first approach (McIlraith, et al. 2001;
McDermott, et al. 2001), agent capabilities are associated with the services
that the agent can provide. This implies that there is an underlying problem-
solving ontology that is shared among all of the agents; for example, each
agent must share the semantics of concepts such as goal and plan.

In the second approach to self-integration, agent capabilities are associated
with the inference problems that the agents perform (Ivezic, et al. 2000). For
example, a supply chain planning agent may be characterized as generating
the process plans that are necessary to manufacture some product, while a
scheduling agent may be characterized by the satisfaction of temporal and
resources constraints to achieve some goal with a given set of process plans.
Integrating these agents would require the scheduling agent to know that the
planning agent can provide the process plans. This approach is most often
seen in domains where agents are “wrapped” around legacy software within
an enterprise. Note that this is also distinct from the preceding approach
since constraint satisfaction is an inference mechanism and not a plan that is
achieved by the actions of the agent.

Work on self-describing agents is primarily being done in the context of the
Semantic Web (Sycara, et al. 1998, 1999; McDermott, et al. 2001). Sycara
has proposed a new language LARKS (Language for Advertisement and
Request of Knowledge Services) to enable matching of agent capabilities;
further, ontologies are specified in a specially designed concept language
(ITL). McDermott’s work is based on DAML+OIL, together with concepts
from the Planning Domain Definition Language.

                                                
1 Personal communication with Elisa Kendall, Chairman & CEO of Sandpiper Software.
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In some ways, agent capability matching can be considered to be an
application of ontologies. For example, this approach presumes that there is
a common shared understanding of capabilities themselves—are they
specified as a set of functions, goals, or some other constraint on intended
behavior? The capture of intuitions about capabilities may require the use of
ontologies for processes, services, goals, obligations, and problem solving in
general. To this extent, this work will depend on the ontologies that are being
designed within the research community.

Summary
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Risks
The challenge of semantic integration is to support seamless exchange of
data among computer systems that preserves the intended semantics of the
communicating intelligent agents. If this were achieved, then software would
perform exactly as designed and there would be no risks. However, we will
not achieve complete semantic integration on a large scale even within the
long-term. We must therefore examine the risks associated with incomplete
integration.

With incomplete semantic integration, we cannot guarantee that the exchange
of information among agents preserves the intended semantics of the agents
involved. In concrete terms, this can lead to scenarios with two kinds of
problems.

1. The agents cannot understand each other, and no information is
exchanged.

2. Two agents misunderstand each other, so that one agent uses a
different set of constraints for inference than the original agent
intended.

The risk in the first scenario is a breakdown in communication that requires
the intervention of humans to resolve semantic conflicts. This is, of course,
undesirable in dynamic environments, since manual mapping is required and
no communication can take place before the mapping between the agents’
ontologies has been specified.

The second scenario has more dangerous consequences, since an incorrect
semantic mapping leads to unintended behavior. The problems that arise in
this case require a cost analysis – what is the cost of a communication
breakdown arising from incomplete semantic integration? Within the context
of the warfighter, unintended behavior may include

•  friendly fire and the mistaken shooting of civilian targets (when
different operational units have different definitions of the concept of
“target”);

• breakdown of logistics plans that arise from different definitions of
delivery dates or resource requirements. For example, consider a
materiel distribution network and suppose that one agent
understands delivery date to be the date on which the supplier
delivers the order, while the supply agent understands delivery date
to be the date that they ship the product. If the shipping delays
arising from these unintended models are not too costly, then there is
no need to change the ontology.

•  lack of coordination in battle plans among members of a
joint/coalition operation.

An actual case of a problem arising from a lack of semantic integration
occurred when NASA lost its Mars Pathfinder probe in 2000 because of the
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incompatible measurement ontologies used by two different teams within the
mission.

Realistically, we can only minimize the risks associated with incorrect
semantic mappings and unintended interpretations of the agents’ ontologies.
This tradeoff between the incompleteness of semantic integration and the
consequences of incompleteness is a major research challenge.
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Forecast
The problem facing the development of networks of semantically integrated
agent communities is to achieve integration in the face of pervasive semantic
heterogeneity (e.g., different languages, different terms, different
conceptualizations). We have to accept that there will never be global
standards on all these things. Therefore, key research areas are semantic
mapping, translation, and interoperability. However, because the advantages
of standards are so great, the goal should be to work toward homogeneity
wherever it is possible to obtain and to develop mapping and translation
capabilities where heterogeneity remains.

We envision that progress in semantic integration will proceed by moving
along the semantic continuum described earlier. Initially, we need to make a
large number of simplifying assumptions (e.g., about homogeneity). Then
they should be relaxed, one by one, moving ever closer to the goal of a
semantically integrated Web. A wide variety of challenge problems should
be major drivers for choosing which assumptions to relax and thus in which
areas to make progress first.

In particular, immediate applications of ontologies will occur in areas that
use only implicit semantics, such as many existing Web-based applications.
For example, travel and bookseller agents automatically access Web pages
looking for good deals. We claim that

the less the following things are true:

• there is widespread agreement about the meaning of a term, and the
syntax for expressing it, and

•  all the software is built by humans who correctly embed the agreed
meaning of the term, and

• all the databases and Web pages and applications use the term in the
agreed way,

then the more necessary it is to

•  have an explicit formal declarative semantics of the term that the
machine can process to interpret the meaning of that term.

The import of this is that we should direct our attention to identifying those
circumstances where it is going to be worth the effort to represent the
semantics of terms. For example, most of the proposed applications of the
Semantic Web being discussed in the literature do not emphasize or discuss
any need for using inference; there are some exceptions (Decker, et al.
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1999), but there is much work to be done to meet performance and scale
requirements of the World Wide Web1.

Because of the risks involved with incomplete semantic integration, many of
the requirements for automated semantic integration that arise from the
Warfighter scenarios will ultimately require more formal semantics to
guarantee the correctness of semantic mappings between agent ontologies.
On the other hand, in the near term, we will see more pragmatic approaches
that will rely heavily on informal semantics.

Within five years, we will begin to see networks of semantically integrated
communities in domains in which there is the most economic incentive to
support reuse and sharing of ontologies. This will likely be a hybrid of the
semantic integration architectures. There will be growing amounts of
standardization that locally removes semantic heterogeneity for the
participants. The community of ontologies approach will have the most
impact in the medium term, linking up the various local groups’ standard
ontologies. Interlingua approaches using formally axiomatized ontologies
will begin to be applied to non-trivial domains in research environments.

In the long term, networks of semantically integrated communities will
become more widespread. A thorough understanding of the benefits and
tradeoffs of the different architectures and the different levels of semantic
richness will be achieved. Complete semantic integration will be
implemented for a small but important segment of the semantic integration
market, perhaps 5-10%. This could be more, if there are major
breakthroughs in inference technology and in ontology development and
verification technology.

Near Term

Standardization of ontology representation languages
It is doubtful that there will be convergence to a single ontology
representation language. However, ontology development will likely be
dominated by a handful of languages, in particular, DAML+OIL (WebOnt),
KIF/CG, and possibly UML. All three of these languages are being
standardized within different international organizations. Once standardized,
translators will be developed within the academic and industrial research
communities to allow the sharing of ontologies between the logical
languages KIF/CG and DAML+OIL (WebOnt). Since UML does not have
a formal declarative semantics, translators between UML and the logical
languages will be more difficult and probably will not be developed within
the near term.

Translators between ontology representation languages and the various
knowledge representation and information modeling languages that are used
                                                
1 For further discussion of inference on the Semantic Web, see [Jasper & Tyler 2001].
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to implement agents will be more difficult to build. In the near term,
translators such as these will probably not be sophisticated at all: they won’t
be complete or sound except in fairly simple instances, and at best will be
semiautomatic.

Agents are implemented using explicit ontologies
In current practice, most agents are still being designed and implemented
without explicit ontologies1. In the near term, designers will increasingly
either extend existing ontologies or develop their own ontologies while they
are implementing their agents. This will happen most often in projects that
integrate teams from multiple problem domains (such as supply chain
management).

Development of interlingua ontologies
One  interlingua ontology (the Process Specification Languages) is already
being developed for industrial applications. However, it has only been
implemented on limited integration problems. In the near term, ontologies
such as PSL will be deployed in larger integration problems that span the
entire supply chain both within an enterprise and also between enterprises.

There are also several new interlingua ontologies that are at an early stage of
development (SUO and UEML). It is premature to determine the
applicability and success of these projects on industrial practice.

Development of loosely aligned community ontologies
There are already several examples of community ontologies (the DAML
ontologies and Ontolingua). One drawback has been that these communities
are too loosely aligned so that reuse and sharing has been hampered. Near-
term developments in ontology design and mapping will support better
alignment of ontologies within the communities.

The only ontologies to have much commercial impact in the short term may
be lightweight ‘ontologies,’ such as the Yahoo! subject taxonomy and de
facto standard lexicons used by industry consortia, such as e-STEEL (esteel
2000).

Implementation of testbeds for evaluating ontologies and mapping
methods
There are several critical issues in semantic integration that can only be
solved by empirical  approaches.  These include the
expressiveness/decidability tradeoff for ontology representation languages, ,
the evaluation of different mapping techniques, and determining whether the
lack of ontology reuse is due to superficial or deep ontological
commitments. We will see the establishment of academic and industrial
testbeds that consist of multiple agents and ontologies within each of the
                                                
1 Note that Cougaar [Cougaar 2001] agents have an explicit ontology, but it isn’t

expressed in a formal way.
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integration architectures discussed earlier in this report. Participants will
carry out experiments within these environments to test the critical issues
presented above.

Use of semiautomatic tools for ontology mapping
Tools for ontology mapping have already been developed within the
academic community. We will see the application of these tools to industrial
problems, particularly in the growth of semantic communities and in areas
such as electronic commerce, where a wide array of different ontologies is
needed.

Ontology Management Systems
In the next five years, we will see the commercial deployment of integrated
environments to support ontology design and verification. In particular, such
systems will have much the same functionality as collaborative computer-
assisted software engineering tools, such as version management.

Application of theorem proving and constraint satisfaction
techniques to ontology verification
There are many automated inference tools available that perform theorem
proving and constraint satisfaction. As more sophisticated ontologies are
developed, we will see increasing application of these tools to support
ontology mapping as well as ontology verification.

Semantic Markup
In the near term, we will see learning techniques merging with traditional
statistics-based techniques for significant scale semi-automatic semantic
markup for light- and medium-weight ontologies. Information extraction
techniques will be available to automatically add semantic markup to text
documents representing significant portions of the document’s information
content. Authoring tools will do semantic markup for free, with little or no
author input.

Midterm

Widespread sharing of ontologies
Experience gained from the deployment of interlingua ontologies and the
development of loosely aligned community ontologies will lead to the
sharing of ontologies, much the way we see the sharing of code within the
open source community today. Another medium for the dissemination of
ontologies will be through the standards communities if ontologies in certain
domains actually become international standards. A mitigating factor is the
degree to which proprietary ontologies (such as Cyc) will play a role in
semantic integration.

Alignment of existing interlingua ontologies
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The development of interlingua ontologies will initially be restricted to
particular domains, such as processes, products, and resources. This will
create islands of integrated systems that will require alignment for
overlapping concepts among the different interlingua. This alignment will
not be the merging of standards, but merely the specification of semantic
mappings between overlapping concepts in different interlingua ontologies.
We will also begin to see multi-hub approaches being seriously tested in
research environments.

Emergence of ontology-based standards within industry
Industry standards are developed through consensus; although this would
seem to benefit from the application of ontologies, standards are not
currently developed in conjunction with explicit ontologies. While short-
term developments will see the “retro-fitting” of ontologies onto existing
standards, in the midterm we will see standards being built from the
ontologies themselves.

Semiautomatic integration via Ontology Negotiation
The Ontology Negotiation architecture will in general be too difficult to
achieve. However, heuristics for ontology mapping will be widely used to
assist in the implementations of this approach. Agents will automatically
generate semantic mappings, but humans will still be needed to determine
that the mappings are correct. Manual mapping will be increasingly replaced
by other architectures

Computer-assisted Ontological Engineering
We will see the emergence of sophisticated user interfaces for ontology
development; this will enable end-users (rather than experts in artificial
intelligence and mathematical logic) to directly design new ontologies and
modify existing ones to suit their purposes.

Open Source Ontology Development
The widespread sharing and reuse of ontologies, coupled with computer-
assisted ontological engineering tools, will give rise to a large body of
ontology developers. This will alleviate the expense of building ontologies
and reduce the time it takes to develop an ontology throughout its lifecycle.

Integration of Legacy Systems
In the next five years, we will see the application of ontologies to the
problem of integrating legacy systems, such as enterprise resource
management, logistics, and operational planning. Initially, this will occur
through the Manual Mapping architecture, particularly in domains where no
acceptable interlingua ontologies exist.

Semantic Markup
Within five years, we will see the large-scale deployment of semi-automatic
techniques and small-scale deployment of fully automatic techniques in
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limited situations. Work will begin on sophisticated tools for semi-automatic
markup with formal ontologies.

Self-describing Agents
We will see the appearance of relatively simple agents that are able to fully
specify their capabilities and advertise capabilities over the Semantic Web.

Long Term

Coordinated development of new ontologies that are aligned with
current ontologies
Through the application of ontology mapping tools, alignment will occur as
ontologies are designed, rather than as an afterthought.

Limited self-integration of agents via the Interlingua and
Community architectures
Self-integration will occur within industry sectors, where agents will be
wrapped around legacy systems such as enterprise resource planning,
supply chain management, and business process engineering. The
interlingua ontologies will have been developed from earlier ontology-based
standards and will be restricted to particular domains such as processes,
products, and resources.

Limited self-integration of agents via the Ontology Negotiation
architecture
Within this architecture, self-integration will be in restricted academic
contexts or using simple ontologies

Ontologies that incorporate defaults and natural kinds
Although there has been much research in nonmonotonic reasoning over the
past 25 years, it has not been applied to ontology design. In the next 5 to 10
years, we will see ontologies that include commonsense concepts (such as
natural kinds) that are axiomatized using defaults and probabilistic
knowledge representation.

We will also begin to see ontologies that include modal concepts, such as
knowledge, belief, and obligations. This will require extensions to ontology
representation languages to incorporate concepts that use “nonclassical”
axioms. Any such efforts must first address the extremely severe
computational problems and paradoxes that arise with these modalities.

Ontology Learning
In the long term, we will see the application of machine learning algorithms
to the problem of ontology acquisition. In particular, initial versions of
ontologies will be developed automatically from restricted natural language
texts (such as technical manuals).
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Forecast Tables

Technology
element

Near term
2001-2003

 Midterm
2004-2006

Long term
2007-2010

· Semantic Integration Technologies

Ontology representation
Languages

· Standardization of ontology
representation languages

· Availability of commercial
translators between major
languages

· Small number of well-
established standard languages
to suit variety of requirements.

· Extensions to languages to
incorporate nonclassical and
nonmonotonic logics

Ontologies for Semantic
Integration

· Agents are implemented using
explicit ontologies

· Merging of domain-specific
ontologies to create generic
community ontologies

· Widespread sharing of
ontologies

· Emergence of ontology-based
standards within industry.

· Small scale success of complete
semantic integration.

· Coordinated development of
new ontologies

· Ontologies that incorporate
defaults and natural kinds.

· Commercially significant
deployment of complete
semantic integration for niche
applications.

Semantic Markup · Ontology learning techniques
merging with traditional
statistics-based techniques for
significant scale semi-automatic
semantic markup for light and
medium-weight ontologies.

· Authoring tools do semantic
markup for free, with little or no
author input.

· Large-scale deployment of
semi-automatic techniques, and
small-scale deployment of fully
automatic techniques in limited
situations.

· Early work in sophisticated tools
for semi-automatic markup with
formal  ontologies.

· Semi-automatic semantic
markup via ontology learning

Ontology Mapping · Use of semi-automatic tools for
ontology mapping

· Semi-automatic integration via
the Ontology Negotiation
Architecture

· Primitive self-integration via
Ontology Negotiation
architecture for simple
ontologies

Table 4: Forecast table for semantic integration (Part 1 of 2).
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Technology
Element

Near Term
2001-2003

Midterm
2004-2006

Long term
2007-2010

Ontology Lifecycle · Implementation of testbeds for
evaluating ontologies and
mapping methods

· Commercially available
ontology management systems

· Application of theorem proving
and constraint satisfaction to
ontology verification

· Computer-assisted ontology
engineering

· Open source ontology
development.

· Widespread use of research
tools providing limited support
for complete semantic
integration.

· Limited commercial support
tools for complete semantic
integration.

· Ontology learning in restricted
technical domains

Agent Capability Matching · Harmonization of languages for
ontology representation and
capability description

· Self-describing agents · Simple self-integrating agents
for limited Web services

Semantic Integration
Architectures

· Deployment of complete
interlingua ontologies

· Development of loosely aligned
community ontologies

· Alignment of existing interlingua
ontologies

· Community ontologies support
semiautomatic alignment

· Integration of legacy systems

· Limited self-integration via
Interlingua and Community
architectures

Table 5. Forecast table for semantic integration (Part 2 of 2)
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Summary and Recommendations
There are two theoretical extremes for environments in which intelligent
agents operate. In the first case there is complete global agreement on terms
and their meaning. In this case, issues in semantic integration do not arise;
there is a single shared ontology, which need not even be explicit. At the
other extreme, there is no agreement at all; we have complete semantic
anarchy. There are many good social, economic, technical, and empirical
reasons why we should never expect to achieve the former. People are
reluctant to give up their familiar terms and concepts and vendors are
reluctant to give up their proprietary formats. On the other hand, the costs of
semantic heterogeneity to companies and society are prohibitive. The key to
progress will be to move away from single ontology views, and to achieve
semantic integration with multiple, and possibly conflicting, ontologies.

Consequently, we believe that there are two key elements of a research
strategy that will take place in the coming decade. First, the formation of
semantically homogeneous communities can only be achieved by addressing
the balance between the need for agreement and standardization, on the one
hand, and the fact that different people and groups will have different needs
on the other. Within the group that abides by an agreement (i.e., by
committing to a single ontology), the problems of heterogeneity do not arise.
If inter-operation is necessary between groups who cannot agree, then
semantic mapping will be required.

The second major element will address the balance between using
semantically lightweight representations versus semantically rich
representations with formal axiomatizations. The tradeoff here is between
computational cost and flexibility and powerful reasoning capabilities. We
believe that there will always be a wide range of solutions that have more or
less agreement and which use lightweight or richer representations. To a
large extent it will depend on the type of the problem. Problems that require
maximum flexibility and powerful reasoning capabilities will be driving the
advance of the semantic integration technology development.

Six major technologies are currently being developed to address the
challenges for automated semantic integration:

• formal languages used for specifying ontologies,

• ontologies that are currently available to support semantic integration,

•  techniques for generating and testing semantic mappings between
ontologies,

• semantic markup,

• software support for the ontology lifecycle, and

• techniques for agent capability matching.

A key factor in the development and widespread deployment of ontologies
will be the extent to which ontologies will fulfill the promise of sharability
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and reusability. Recent developments in the standardization of ontology
representation languages will provide firm foundations for sharing
ontologies. To some extent, these challenges will depend on social factors
(such as the formation of community ontologies and the adoption of
standard interlingua ontologies) as well as technical factors.

There is no easy way to map at the semantic level. In the short term, the
emphasis is likely to be on tool support to enable humans to more quickly
and accurately specify pre-defined mappings that are used at runtime to
determine what a given term means with respect to a given agent’s ontology.
In the longer term, work will proceed which will enable agents to semi-
automatically determine the meaning of new terms encountered through
interactions with other agents.

There are several critical issues in semantic integration that can only be
solved by empirical approaches. These include the expressiveness/
decidability tradeoff for ontology representation languages, the evaluation of
different mapping techniques, and determining whether the lack of ontology
reuse is due to superficial or deep ontological commitments. Progress in
resolving these issues will only occur with the establishment of testbed
environments that consist of multiple agents and ontologies within each of
the integration architectures discussed earlier in this report and that allow
participants to carry out experiments that test alternative approaches.

Notes
1 In a recent special issue of IEEE Intelligent Systems on the Semantic Web, leading

workers in this even newer field of study also claim that the above definition best
characterizes the essence of an ontology (Fensel, et al. 2001).

1 http://www.w3.org/2001/sw/WebOnt/
1 In first-order logic, we can only quantify over elements in the domain of interest. In

second-order logic, we can quantify over relations, functions, and any set of elements in
the domain.

1 Personal communication with Elisa Kendall, Chairman and CEO of Sandpiper
Software.

1 For further discussion of inference on the Semantic Web, see (Jasper and Tyler 2001).
1 Note that Cougaar (Cougaar 2001) agents have an explicit ontology, but it isn’t

expressed in a formal way.
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 Mobile Agents

Brief Overview
Mobile Agents are programs that, with varying degrees of autonomy, can
move between hosts across a network. Mobile agents combine the notions of
mobile code, mobile computation, and mobile state. They are location aware
and can move to new network locations through explicit mobility operations.
The technologies surveyed in this chapter include mobile-agent and related
middleware, as well as coordination mechanisms for loosely coupled
applications, which allow mobile agents to handle the physical mobility of
devices more effectively.

Mobile Agents are relevant to warfighter scenarios for several reasons. First,
mobile agents can relocate themselves during execution, an essential
property for reactive and adaptive systems that must respond to changing
execution environments. As soon as a change in operating conditions is
detected, a mobile-agent application can reconfigure itself to relocate its
computations away from a physical attack on the network or closer to a
critical database after a drop in network bandwidth. Mobility also applies to
the application’s data itself, enabling new styles of pro-active applications
where system wide actions have to be performed even before any clients are
around. An example is the pre-caching of maps to remote geographical
locations to ensure instant access to essential information once warfighters
enter that region.

Mobile Agents also support disconnected operations. In a mobile system, a
client can send agents to a server before disconnecting. The agents can then
perform their task while the client is unreachable and communicate results
back whenever connectivity is regained. Similarly, a server might send a
component to a handheld or other portable device to further reduce
connectivity requirements.

Even if the network is stable, mobility still allows bandwidth conservation
and latency reduction. For example, if a client application needs to perform a
complex multi-step query, it can send the query code to the network location
of the databases, avoiding the transmission of intermediate results across the
network. Although the database developers could add a database operation
that performed the complex query, it is unreasonable to expect that
developers can predict and address every client need in advance. Mobile
agents allow a client application to make efficient use of network resources
even when the available services expose low-level, application-independent
interfaces.

Description
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In all four cases – changing network conditions, disconnected operation,
bandwidth conservation and latency reduction – the common thread is
dynamic deployment and reconfiguration. Traditional programming
languages constrain designers to commit to a particular system structure at
build time. The choice whether a particular service is implemented on the
client or server side must be made early and can not be revisited if some of
the initial assumptions about the application turn out to be invalid. Mobile
agents, on the other hand, decouple system design from system deployment,
and turn control over deployment to the applications themselves, allowing
much more flexible design patterns. An application can deploy its
components to the most attractive network locations and redeploy those
components when network conditions change, leading to more efficient use
of available resources and faster completion times.

Mobility does raise several technical issues, the most important of which is
security. Mobile-agent systems have dual security requirements, the need to
secure the infrastructure from rogue agents, and the need to protect agents
from compromised hosts. Commercially available systems still do not
provide sufficient security guarantees to protect the infrastructure from all
attacks, this chapter will describe some promising technologies for
addressing this problem.

Mobile agent technologies provide capabilities that can significantly enhance
military systems. The following sub-sections describe potential applications
of mobile agents in various warfighter-relevant scenarios.

Mobile agents can migrate to key locations in a network of autonomous
sensors and then filter the collected sensor data to reduce bandwidth
requirements and implement local management policies. Mobile agents are
particularly useful when it is not possible to pre-install stationary agents on
all of the sensors. In particular, the filtering algorithm, which can be of
arbitrary complexity, may depend on the phenomenon being observed and
change with time. For example, different filtering agents can be used to
achieve different levels of accuracy. For high-end sensors, onboard
processing is possible, and agents can be sent to the sensors themselves; in
other cases, agents can be sent to routers or gateway machines within and at
the edge of the sensor field. The agents can be relocated on the fly, allowing
the sensor application to optimize the placement of its management and
filtering code with respect to current network loads.

By using automated monitoring algorithms, mobile agents can act as
customized monitors that wait for phenomena of interest to be observed at
distributed sensor locations and then notify human operators. Such a
capability can significantly reduce the workload of human operators.

In addition to acting as on-line filters, mobile agents can also help perform
data mining on off-line sensor data. In particular, mobile agents can
efficiently correlate information across multiple sensors in order to classify
observed phenomenon to provide actionable information to warfighters.

Relevance to
the Warfighter

Advanced
Sensor Grids
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Mobile agents allow the dynamic configuration of the software deployed on
unmanned autonomous systems. New capabilities such as new algorithms,
missions, and functions that were not anticipated when the system was
originally designed and deployed can be dynamically deployed while
vehicles and sensors are in the field. This functionality is already used in
outer space exploration projects where communication latencies and physical
inaccessibility to devices require mobile-agent like approaches. Fully
embracing mobile agent architectures will enable finer granularity and
improve ease of use. Mobile agent technologies further allow exchange of
functions between platforms, providing a very efficient and localized
software update mechanism. Department of Defense programs such as
Future Combat Systems are exploring the design of hardware vehicles that
support reconfiguration in the field. Mobile agents, taking advantage of
mobile code, provide reconfiguration at the software level, complementing
the flexibility provided by hardware reconfiguration.

Certain kinds of autonomous vehicles such as undersea vehicles lose
network connectivity while submerged. The capability of mobile agents to
support disconnected operation is important under these circumstances.

Space exploration vehicles such as the Mars rover present a variation of the
network disconnection problem – extremely long network latencies. Mobile
agents, by moving themselves to the remote nodes, overcome latency
problems.

Mobile operations are characterized by low and intermittent connections as
the warfighters may not be able to communicate or may be forced to
communicate in short bursts to avoid detection. In this setting, mobile-agent
technology eases the task of developing software systems. A mobile agent
that is capable of performing some task in its entirety can be sent to or from
the warfighters to avoid the need for continuous data transmission. This
agent can continue its task even if the network link becomes completely
unavailable, either due to mission requirements for “radio” silence or due to
physical interference, physical separation, or hardware problems. Moreover,
the agent can change its behavior or relocate itself as mission and network
conditions change. For example, if radio silence becomes essential, an agent
running on a remote sensor platform might relocate itself to a less powerful
sensor on one of the warfighters themselves, avoiding all radio emissions at
the expense of lower sensor resolution. Finally, the entire communications
infrastructure, not just application-level tasks, can be implemented with
mobile agents. As conditions change, new communication agents can be
distributed to all the warfighters in a particular unit. For example, if radio
silence has become important, the unit leader’s device might deploy
communication agents that compress and buffer all data messages, so that
the messages can be sent in short bursts at mission-appropriate times.

Joint/Coalition Operations are characterized by ad-hoc network
infrastructures connecting information systems operating in different
(computer) languages and with different data formats. The particular policies
and requirements of a coalition depend on its members and the mission at
hand. It would be difficult, if not impossible, to pre-install code for all

Unmanned
Autonomous
Systems

Mobile
Operations

Joint/Coalition
Operations
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possible mission needs on every computer of every coalition partner.
Mobile-agent technology allows dissemination of software components that
act as “translators” in order to provide interoperability among the different
network infrastructures and data formats of the coalition partners, and to
perform the tasks related to the mission at hand. Moreover, in addition to
supporting interoperability, mobile agents can be deployed to setup flexible
information feeds between coalition partners and to enforce policies
regarding information release.

Mobility is essential to the rapid deployment of the needed functionality
across the large coalition infrastructure. Without mobility, the mission could
be significantly delayed as computer personnel installed the needed software
in more traditional (and less automated) ways. Moreover, mobility allows the
deployment of new capabilities as the mission evolves, not just the
deployment of initial functionality.

Similarly, any rapidly formed mission team, whether it is under the control
of a coalition or a single nation’s military, might not have all needed
software pre-installed on their portable devices. Mobile agents allow the
rapid deployment of the necessary software components to the warfighters
and eliminate the need for a separate and time-consuming software
preparation phase. New software components can be deployed as mission
conditions change.

Many large-scale distributed systems, such as the logistics systems that
integrate military units and commercial suppliers, must be able to evolve, but
cannot tolerate downtime. Mobile agents provide a technology for
dynamically upgrading such distributed systems with new procedures
without interrupting their operation. For example, a logistics system can be
upgraded without interrupting the supply chain. Furthermore, mobile agents
can provide additional fault tolerance, since an agent can be duplicated at any
point of its computation and stored on secondary storage or sent to another
platform. For example, a logistics system can create replicates of any
software node in the supply hierarchy, according to current network
conditions and the changing importance of particular supply sources or
sinks.

Mobile-agent technology provides an attractive way to implement distributed
monitoring tools that enforce non-local security policies over large-scale
networks. Such non-local monitoring can detect distributed denial of service
(DDOS) and other large-scale attacks and help pinpoint the source of those
attacks. Through the use of mobile agents, this monitoring functionality can
be deployed dynamically in response to previous attacks. For example, if a
military network is under extensive DDOS attack during a particular
mission, the DDOS monitoring code can be dispatched on the fly to a larger
number of machines. Similarly, if a military network comes under a
previously unknown attack, mobile agents can be implemented and deployed
to detect that particular attack while the military mission is still underway.
The ability to dynamically distribute existing and new monitoring code
makes the military networks more robust to cyber-attack, including attacks
that are encountered for the first time.

Rapidly Formed
Mission Teams

Logistics and
Other “No
Downtime”
Systems
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Mobile agents allow bandwidth conservation and latency reduction in many
information-retrieval and management applications. For example, in a low-
bandwidth environment, a mobile agent that performs a multi-step query
against multiple databases can be dispatched close to the location of the
databases, avoiding the transmission of intermediate results across the
network. Similarly, in an unreliable network environment, the same mobile
agent can continue its query task even if the network goes down temporarily.
In the reverse direction, code that provides high-level access to a particular
database or service can be dynamically dispatched to a warfighter’s machine,
further reducing the warfighter’s reliance on the network. For example, if a
warfighter is directly or indirectly making heavy use of a particular database,
code to cache query results can be dynamically dispatched to the
warfighter’s machine. Queries that can be answered from the cached results
will never be transmitted across the network, even though the warfighter had
no pre-installed query caching capabilities.

The main risks of mobile-agent technology are the security issues associated
with untrusted mobile code and machines. Existing mobile-agent systems do
provide significant agent and machine protection, such as encryption for a
mobile agent in transit, digital signatures to authenticate the owner and origin
of a mobile agent, and “sandboxing” and other restricted execution
techniques to prevent a mobile agent from taking destructive action, either
maliciously or accidentally. This protection is sufficient to allow focused use
of mobile agents in many military applications, particularly non-coalition
operations in which all mobile agents originate from inside a single
country’s military. As of this writing, however, guaranteeing the security of a
mobile-agent application running in a mixed network in which some agents
and some hosts may be compromised remains an open problem. Integrity of
mobile-agent systems may be compromised through a range of cyber-
attacks, leading to issues such as denial of service for critical tasks and loss
of privileged information. While these risks are serious, we point out that
current technologies for Internet programming have essentially the same
problems, and thus mobile agents, rather than allowing fundamentally new
security exploits, are simply forcing us to confront security issues inherent
to wide-area network programming.

Mobility technologies are a focus of many commercial software
development environments, but widespread adoption awaits consensus on
communication and mobility standards, as well as assurances of scalability,
security, control, and robustness that will be provided by mature community
infrastructure capabilities. We recommend focused use of interim non-
standardized mobile-agent technologies until commercial standards and
infrastructure allow these to be adopted in a more universal fashion. For
example, using mobile agents to deploy new functionality from a United
States headquarters to a United States warfighting team is efficient and
secure with current systems, while building an infrastructure for coalition
operations based entirely on mobile agents requires further basic research

Information
Retrieval and
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Risks
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and development. Dynamic languages such as Java and C#, which provide
dynamic code loading, language-based access control, and introspection, will
likely remain the key technical element for building product-grade agent
systems, and require further research and development to expand their
security, introspection and state-capture features. In addition, it is essential to
develop freely available, open source, mobile-agent platforms to support
future research in mobility technologies and to become the basis of
commercial systems. Open source systems are essential for scientific
experimentation and provide opportunities for the kind of external scrutiny
that will reveal security weaknesses and, in the end, give rise to mature
warfighter mobile-agent standards.
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Technical Description

Advances in computer communications and computing power have changed
the landscape of computing: computing devices ranging from the smallest
embedded sensors to the largest servers are routinely interconnected and
must interoperate. Their connections often are set up over untrusted and
untrustworthy networks, with limited connectivity and dynamic topologies.
The computational capacities of the devices as well as the communications
bandwidth between the devices are in a state of constant change and users
expect computer systems to dynamically adapt to such changes. Systems
should opportunistically take advantage of new resources while at the same
time transparently compensating for failures of systems and communication
links. Moreover, the characteristics of the applications running on those
devices often are quite dynamic, with new software added to the system at
run time.

While many of the characteristics of distributed systems have changed, the
tools for developing distributed software have not evolved. The majority of
distributed programming is still being done in languages and environments
that were designed either for uni-processor hardware systems or for static
software systems in which the locations and functionality of all clients and
servers can be specified a priori. This chapter will look at different
approaches to mobile agents, a new paradigm that eases the task of
developing modern distributed systems. In addition, the chapter will look at
programming languages and middleware designed to support mobile agents,
as well as the coordination languages and security mechanisms required by
those languages and infrastructures.

Mobile agents are software agents with the additional capability to move
between computers across a network connection. By movement, we mean
that the running program that constitutes an agent moves from one system to
another, taking with the agent the code that constitutes the agent as well as
the state information of the agent. The movement of agents may be user-
directed or self-directed (i.e. autonomous). In the case of user-directed
movement, agents are configured with an itinerary that dictates the movement
of the agents. In the case of self-directed movement, agents may move in
order to better optimize their operation. Mobility may also be a combination
of user- and self-directedness.
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Mobile agents encompass three basic capabilities: mobile code, mobile
computation, and mobile state. These three capabilities are shown in the
figure below. Each of the capabilities is an evolution of previously developed
capabilities. The following sections describe each capability.

Mobile computation involves moving a computation from one system to
another. This capability is an evolution of remote computation, which allows
a system to tap into the computational resources of another system over a
network connection. One of the original mechanisms for remote
computation was Remote Procedure Call (RPC). Java Remote Method
Invocation (RMI) is another example of remote computation as are servlets
and stored procedures.

The difference between mobile and remote computation is that mobile
computation supports network disconnection. In a traditional remote
computation model, the system requesting the service (the client) must
remain connected to the system providing the service (the server) for the
duration of the remote computation operation. Additionally, depending on
the interface exposed by the server, an interaction can require an arbitrary
number of messages between client and server. If network connectivity is
lost, the remote computation will become an orphaned computation that will
either be terminated or whose results will be discarded. A mobile
computation, on the other hand, is an autonomous entity. Once the
computation moves from the first system (which may nominally be called
the client) to the second system (the server), the computation continues to
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execute on the server even if the client becomes disconnected. The agent
returns to the client with the results of the computation when (and if) the
connectivity is recovered.

Mobile Code is the ability to move code from one system to another. The
code may be either source code that is compiled or interpreted or binary
code. Binary code may further be either machine dependent or be some
intermediate, machine-independent form.

Mobile code is used in other contexts besides mobile agents. For example,
system administrators use mobile code in order to remotely install or
upgrade software on client systems. Similarly, a web browser uses mobile
code to pull an applet or script to execute as part of a web page.

Code may be mobile in two different ways: push and pull. In the push
model, the system sending the code originates the code transfer operation
whereas in the pull model, the system receiving the code originates the code
transfer operation. An example of the pull model is a Web browser
downloading components such as applets or scripts. Remote installation is
an example of the push model. Mobile agent systems use the push model of
code mobility.

Pull mobility is often considered to be more secure and trustworthy because
the host receiving the code is the one that requested the code. Usually, the
origin of the request lies in some action carried out by a user of the system
and hence pull mobility is superficially more secure. Push mobility on the
other hand allows a system to send code to the receiving system at
unexpected or unmonitored times. Hence push mobility is less trustworthy
from a user’s point of view. In practice the overwhelming majority of
security exploits encountered in distributed systems originates in careless
user actions such as running mail attachments.

Mobile code allows systems to be extremely flexible. New capabilities can
be downloaded to systems on the fly thereby dynamically adding features or
upgrading existing features. Moreover, if capabilities can be downloaded on
demand, temporarily unused capabilities can also be discarded. Swapping
capabilities on an as-needed basis allows systems to support small memory
constrained devices. Discarding capabilities after use can also help improve
system security1.

Mobile state is an evolution of state capture, which allows the execution state
of a process to be captured. State capture has been traditionally used for
checkpointing systems to protect against unexpected system failure. In the
event of a failure, the execution of a process can be restarted from the last

                                                
1 Networks allow system capabilities to be exploited by remote systems.
Some researchers suggest that not having capabilities present at all times
reduces the opportunities for exploitation. It is not clear that this is a solution
to many of the security concerns raised by agent technologies but it is a
direction worth evaluating further.

Mobile Code

Mobile State
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checkpointed state thereby not wasting time by starting from the very
beginning. Checkpointing is thus very useful for long-running processes.
Operating system research has investigate capturing entire process states, a
variant of checkpointing, for load balancing purposes in the early 1980s, but
that avenue of research proved to be a dead-end due to coarse granularity of
process and semantics problem due to the impossibility of capturing
operating system resources such as open file descriptors.

Mobile state allows the movement of the execution state of an agent to
another system for continued execution. The key advantage provided by
mobile state is that the execution of the agent does not need to restart after
the agent moves to a new host. Instead, the execution continues at the very
next instruction in the agent.

Not all mobile agent systems provide support for state mobility [Fuggetta,
Picco, Vigna 1998]. The term strong mobility is used to describe systems
that can capture and move execution state with the agent. Operationally,
strong mobility guarantees that all variables will have identical values and the
program counter will be at the same position. Weakly mobile-agent systems,
on the other hand, usually support the capture of most of a program’s data,
but restart the program from a predefined program point and thus require
some programmer involvement at each migration. The advantage of strong
mobility is that the result of migrating is well defined and easier to
understand, but its disadvantage is that it is much more complex to
implement efficiently. The languages that support strong mobility are
Telescript [Whi96], D’Agents, NOMADS, and Ara, while weak mobility is
supported by a large number of mobile agent frameworks [Suri, Bradshaw,
Breedy, Groth, Hill, Jeffers 2000; Suri, Bradshaw, Breedy, Groth, Hill,
Jeffers, Mitrovich, Pouliot, Smith 2000; Baumann, Hohl, Rothermel, Straßer,
Mole 1998; Sekiguchi, Masuhara, Yonezawa 1999; Binder 2001; Truyen,
Robben, Vanhaute, Coninx, Jossen, Verbaeten 2000 Funfrocken 1998;
Bouchenak 1999]. Results by Bettini and De Nicola suggest that strong
mobility can be translated into weak mobility without affecting the
application semantics [Bettini, De Nicola 2001]. The result is partial as it
only works for single-threaded agents. Research is needed to be able to
translate multi-threaded strongly mobile agents.

The most important advantage provided by strong mobility is the ability to
support external asynchronous migration requests (also known as forced
mobility). This allows entities other than the agent (such as other system
components, an administrator, or the owner) to request that an agent be
moved. Forced mobility is useful for survivability, load-balancing, forced
isolation, and replication for fault-tolerance.

The classification of mobile systems due to Picco and Vigna distinguishes
three broad approaches to mobility and summarizes the previous description
of mobility technologies:

1. Remote evaluation – Remote evaluation technologies provide means
for an application to invoke services on another node by specifying

Classification of
Mobile
Systems
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the code, as well as the input data, necessary to invoke the service.
The code and input data are sent to the remote node, and the remote
node then executes the code and sends the output data back to the
client.

2. Code on Demand – This approach supports software components
with dynamically loaded behavior. In this approach, code fragments
are requested as they are needed, and dynamically compiled (if
needed), verified and linked into a running system.

3. Mobile Agents – Mobile agents2 strengthen code-on-demand with
support for moving running computations. Rather than simply
moving code (and possibly input data), mobile agents view a
computation as a single entity and support the migration of a
complete program to another node. This transfer is often seamless,
so that the computation can proceed without disruption.

Remote evaluation is doubtlessly the simplest way to achieve mobility. This
approach is often used for system administration tasks in which small
programs written in a scripting language are submitted to hosts on a secure
network. Stamos coined the name [Stamos 1986] to describe a technique
where one computer sends another computer a request in the form of a
program. The receiving computer executes the program in the request and
returns the result back to the sending computer. A number of papers
investigated this approach in the early 90’s [Stamos, Gifford 1990; Stamos,
Gifford 1990b; Segal 1991], but the only noteworthy infrastructure
supporting this approach today is the SafeTCL scripting language
[Borenstein 1994; OWL97]. The main drawback of scripting languages is
that they are not suited to the development of large and reliable software
systems because they often lack the basic software engineering features (e.g.
encapsulation and data hiding) needed in large systems. Furthermore, the
remote evaluation paradigm is confined to classical client/server settings and
does not support detached operations well.

Code on demand is one of the main innovations of Sun Microsystems’s
Java programming language [GLS97]. This approach allows applications to
be delivered piecemeal. The Java execution environment, called a Java Virtual
Machine (JVM), is able to find and load any missing components at run
time. These components are dynamically linked into the running system, and
components that are never needed for a particular application run are never
sent across the network, conserving network bandwidth. While dynamic
loading is not a novel concept, the idea of allowing potentially untrusted
content to be integrated into a running execution environment popularized
the concept of ‘safe programming languages’. The subsection on security
will look in more detail at the requirement for safety. The success of Java
                                                
2 The term ‘mobile agent’ is slightly misleading, as mobility is not restricted
to agents, but can be used with any software component or program.
Unfortunately, the literature does not differentiate between ‘mobile agents’
and ‘mobile programs’.
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owes as much to the safety features that were installed to ensure security as
to its dynamic nature. Microsoft’s dotNet infrastructure, and in particular the
Common Language Runtime provide a similar functionality, but that
technology remains, as of this writing, untested and may not yet provide a
comparable level of security as Java, though in the long run it is almost
certainly going to play a major role. To summarize, the advantage of code-
on-demand over remote evaluation is that a language such as Java is a
general-purpose programming language with several mature
implementations suited for building complex systems. The disadvantage of
code on demand approaches is that software is not location-aware; in other
words the code running in a Java system can not know where it is located
nor is it able to trigger its own migration. Standards such as Java remote
method invocation (RMI) extend the pure code-on-demand approach with
the means to transfer data along with code under program control; they can
thus be used as a basis to implement mobile agent systems but do not
provide all of the functionality of a mobile agent system.

Mobile software agents improve on previous approaches by bundling code
and data into computational entities that can control their own mobility.
Mobile agents programs can thus control their own deployment, perform
load balancing, and program distributed applications. Mobile-agent
infrastructures can be implemented as extensions to code-on-demand
systems [Suri, Bradshaw, Breedy, Groth, Hill, Jeffers 2000; Lange, Oshima
1998; Bryce, Vitek 1999; Baumann, Hohl, Rothermel, Straßer, Mole 1998;
Sekiguchi, Masuhara, Yonezawa 1999; Binder 2001; Truyen, Robben,
Vanhaute, Coninx, Jossen, Verbaeten 2000; Funfrocken 1998; Bouchenak
1999], as extensions to remote evaluation systems, or as new programming
languages [White 1997; Tschudin 1994]. The advantage of building on an
existing language such as Java is that the existing technology can be
leveraged, but this comes at the price of some conceptual complexity, since
the system designer must deal with inherent limitations of Java. For example,
Java does not provide adequate resource management and process isolation
facilities to allow untrusted computations to execute on a trusted machine.
Another advantage of mobile-agent systems is that the infrastructure, not the
programmer, is in charge of migrating the state and code needed by the
computation. Finally, since computations are first-class entities in mobile-
agent systems, they naturally can be associated with authority, access rights,
and resources.

It is important to realize that, at a basic level, all of these approaches are
equally powerful [Puliato, Riccobene, Scarpa 1999]. There is no distributed
application that can be implemented with one technology and not any other
[Bettini, De Nicola 2001]. Just as we now recognize that high-level
programming languages increase programmer productivity, high-level
mobility abstractions increase productivity even further. The goal of mobile-
agent research is to find programming abstractions that are well suited to the
tasks at hand, and provide well-engineered, efficient linguistic constructs to
support these abstractions. In the long run, mobile-agent languages must be
supplemented with automated tools for reasoning about programs and
validating their properties (by static analysis, abstract interpretation or model
checking). The goal of research in this arena is not only to provide the

Mobile Agents
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verification technology but also to design languages that are amenable to
verification. Just as it is much easier to verify Java code than assembly, it is
easier to verify programs that use mobility explicitly than systems in which
mobility is implicit. In the long run we expect verification technologies to
play an essential role to ensure correctness and provide the kind of security
guarantees expected in critical warfighter information systems.

Understanding the semantics of mobile computation is essential for
reasoning about mobile agents. Reasoning about mobility can, in turn, yield
guarantees about the correctness of mission critical software. Researchers
have explored a number of theoretical models based on process calculi with
encouraging results. Two of the approaches that have been studied in this
direction are Cardelli and Gordon’s ambient calculus [Cardelli, Ghelli,
Gordon 2000c] and Vitek and Castagna’s Seal calculus [Vitek, Castagna
1999]. These models abstract both:

o logical mobility (mobility of programs) and

o physical mobility (mobility of nodes, such as handheld devices).

The results obtained thus far include a number of type systems for
controlling agent mobility [Cardelli, Gordon 1999; Cgc99; Cardelli, Ghelli,
Gordon 2000; Cardelli, Ghelli, Gordon 2000a], and a logic for stating
properties of agent programs [Cardelli, Ghelli, Gordon 2000a]. These
formalizations have wider applicability as shown by an application of the
ambient calculus as a query language for XML [Cardelli, Gordon 2001].
The research on foundations of mobility is actively continuing; in the long
run theoretical results can be expected to feed back into languages and
infrastructures.

While the theoretical models can accommodate physical mobility, none of
the mobile-agent infrastructures currently available provide support for
migratory hosts. Host migration and ad-hoc networking are being addressed
by work done on coordination languages, which are discussed later.

A major difference between the theoretical models and implementations is
the distinction between strong mobility and weak mobility [Fuggetta, Picco,
Vigna 1998]. Most foundational models assume strong mobility whereas
most implementations support weak mobility. This may not be a major
problem since, as mentioned earlier, strong mobility can be translated into
weak mobility, but it will make reasoning about program properties less
straightforward.

A paradigm is as much defined by the features that are excluded as the
features that are included. We now present a list of the key required features
as well as some features that we explicitly do not expect mobile agent
systems to support. Mobile agents, like most modern distributed systems,
have to address five issues that require infrastructure support:

Foundations of
Mobility

Requirements
Addressed by
Mobile Agents
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The physical size of the network and the number of hosts that can participate
in a distributed computation must scale to global networks of millions of
nodes (of which tens of thousands or more might be participating in a single
distributed computation). At this size, there can be no assumption of shared
state in the programming model, nor can there be algorithms that require
synchronization, or that rely on up to-date information.

Fluctuations in bandwidth, latency and reliability are so common that they
cannot be hidden. Location of resources and of the computation that
accesses those resources must be explicit in the programming model.

Failures of machines and communication links can occur without warning or
detection. Some of these failures may be temporary as machines may be
restarted and connections reestablished, but others may be permanent. Thus,
at any time, a computation may communicate with only a subset of the
network, or be fully disconnected.

The network topology, both in the physical sense and in the logical sense of
available services, changes over time. New hosts and communication links
appear with no advance notice, while other hosts disappear and reappear
under a new name and address. Applications should be able to adapt to these
changes and dynamically reconfigure themselves. Without the ability to
dynamically reconfigure its components, applications will have difficulty
adapting to changes in locality and connectivity.

Since security requirements vary from application to application, basic
security mechanisms must be provided by the underlying infrastructure
(type safe programming language, checked array access, access control
mechanisms) and must be extended with tools for automatic validation of
security properties (model checking, program analysis, proof-carrying code).

These five requirements – absence of global state, explicit localities,
restricted connectivity, dynamic configuration, and security – drive many of
the design decision behind current mobile agent systems. Mobile agent
architectures support the above requirements. Mobile agents do not define
any notion of shared or global state. Furthermore, mobile agents do not
require that host be connected while the agent execute, in fact mobile agents
have been repeatedly advocated for disconnected operations (restricted
connectivity). Finally, mobile agents, through the use of mobile code,
support dynamic configuration. Security, the last issue, remains a challenge
that must be addressed through infrastructural tools and services.

Mobile software agents are just one element of mobile code technology that
will be used in a warfighter’s computational environment. While mobile
agents cover the application layer, we see mobile code also being used for

No Global State

Explicit
Localities

Restricted
Connectivity

Dynamic
Configuration

Security

Layers of Mobile
Code
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active middleware (see the section on physical mobility and coordination
below) down to active networks and finally software radios and morphable
CPUs at the physical layer. Taken individually, each use of mobile code
allows customizing a layer’s functioning. Taken together, one can start
integrating configuration issues across layer boundaries and further optimize
a system’s overall performance.

To summarize this portion of the report, we now review some of the main
mobile-agent systems and classify them according to the following
characteristics: the type of mobility supported by the language or system, the
language(s) in which agents are written, whether host mobility (mobile
devices) is supported, and the quality, availability, and current level of
support of the implementation. The quality of implementation column
discriminates products from research prototypes. The availability column
indicates which systems can be freely used, and which require a license.
Finally, the level of support column indicates whether the project is still
active, and whether assistance is forthcoming.

The general conclusions that emerge are that weak mobility is by far the
predominant approach. The only commercial strongly mobile system
(Telescript) was discontinued several years ago, and the other two strongly
mobile system (D’Agents and NOMADS) are university research
prototypes. Java is the most popular agent implementation language, due to
both the popularity of the language and its support for dynamic loading and
advanced security features. Most available systems are research prototypes,
but they have the advantage of being open source and thus can be used as a
starting point for further development. A number of these projects have an
active developer community, an important factor for the adoption of an
infrastructure, although it is important to note that most open-source systems
do not enjoy the same kind of support as commercial products.

Agent
System

Mobility
support

Base
language

Host
mobility

Quality of
implement.

Availability Level of
support

Telescript Mobile
agent

(strong)

Telescript No Product Discontinued None

NOMADS Mobile
agent

(strong)

Java No Prototype Free Medium

Summary
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Java Code on
demand

Java No Product Commercial High

SafeTCL Remote
evaluation

Tcl No Product Open source High

D’agents Mobile
agent

(strong)

Java, Tcl,
Scheme

No Prototype Open source Medium

JavaSeal Mobile
agent
(weak)

Java No Prototype Open source Low

Mole Mobile
agent
(weak)

Java No Prototype Open source Low

Aglets Mobile
agent
(weak)

Java No Product Open source Medium

Lime Mobile
agent
(weak)

Java Yes Prototype Open source Medium

Messenger Mobile
code

(weak)

M0 No Prototype Open source Low

Table: Summary of mobile-agent systems.

While the above table is not an exhaustive list of existing mobile-agent
systems (over 100 such systems have been implemented in the last five
years), it provides a good overview of the most influential systems. The main
conclusion to draw is that Java is the common thread in most current mobile-
agent implementations. Thus a research emphasis should be directed on
evolving mainstream Java implementations to meet the needs of agent
systems. The most critical need is additional security features, which will be
addressed in the next section, but an important secondary need is support for
capturing thread state. Furthermore, since many military scenarios involve
limited capacity devices, research on real-time Java should bring benefit to
military applications. Another emerging technology is Microsoft’s dotNet
with the Common Language Runtime. Like Java, dotNet is based on a virtual
machine and supports the dynamic loading of programs. The suitability of
dotNet to mobile-agent applications has not yet been evaluated, more
research is required in that direction as well.
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While mobile agent systems mostly advocate moving code as the only
building block for distributed computation, a family of so-called
coordination languages3 is emerging as an extension to mobile-agent
systems. Coordination languages provide higher-level communication
protocols such as generative communication and publish/subscribe models.

While the theoretical models for “general mobility” can accommodate
physical mobility, none of the mobile agent system infrastructures currently
available provides support for migratory hosts. Host migration and ad hoc
networking are being addressed by work done on coordination.

This new research direction on “coordination languages” was started in the
late 80’s by Gelernter with a programming model named Linda [Carriero,
Gelernter 1989]. The common theme underlying most coordination
languages is a form of associative communication in which a process can
register an interest and another can offer a service. The infrastructure (often
called a tuplespace) then matches interests with offers. Communication is
thus uncoupled since no explicit link needs to be established between
communicating partners; a message may be read at any time and by any
process interested in it. These properties make it straightforward to provide
resource discovery protocols that match up clients with servers based on
their respective offers, to program in an event-driven style and to
dynamically configure running systems. There is a vital research community
focusing on coordination from the programming language aspect with a
yearly conference (Coordination), and a growing influence: even Sun
Microsystems’s Jini technology incorporates a coordination language called
JavaSpaces.

Traditional computational models assume that all devices and software
components are deployed before an application starts executing, and that
once deployed, configurations are static. In the field of wireless computing,
however, in which Personal Digital Assistants (PDAs) and other portable
devices can establish ad-hoc network connections, these assumptions do not
hold. Instead new computational models are needed to ease the task of
developing applications for such fluid environments. Mobile agents provide
part of the solution since they provide computation mobility, which allows an
application to reduce its dependence on an unreliable ad-hoc network. The
mobility of devices presents other challenges, however. In particular, current
mobile-agent infrastructures do not provide high-level communication
primitives suited for physically mobile systems. Experience with a medium-
sized mobile-agent application suggests that well over half of the
application’s code deals with communication in some way. This code is both
tedious to write and the source of many of errors.

                                                
3 In this context coordination languages provide a programming model for
coordination of a number of parallel and distributed tasks. They operate at a
much higher level than agent-to-agent interaction languages.

Physical
Mobility and
Coordination
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Designing communication mechanisms for mobile environments is a
challenging task. Communication in a physically mobile system is:

- Transient and Opportunistic: Communication patterns must fit
into an environment where hosts are intermittently connected to
the network and agents can leave a host at any time.
Communication thus tends to be opportunistic, with applications
taking advantage of whatever network resources happen to be
available at a particular time, but not relying on their continued
availability. The underlying communication protocols must
accommodate long latencies and/or timeouts caused by the
sudden departure of an interlocutor or the disconnection of the
agent itself.

- Unnamed and Untrusted: Communication in mobile systems is
often based on the services being offered, rather than the identity
of the entity providing those services. As long as the needed
services are provided, agents do not necessarily have to know
each other's names and locations to interact. The corollary of
anonymity is that interlocutors do not necessarily trust each
other, which implies that the communication infrastructure must
provide the mechanisms needed to implement secure
communication protocols.

Coordination languages describe a family of programming languages and
infrastructures that provide communications mechanisms with the two
characteristics above. While the early coordination languages were based on
centralized systems, a new generation of languages targeted at ad-hoc
networks is emerging. The most widely known is Picco and Murphy’s Lime
language [Picco, Murphy, Roman 1999]. Lime is a decentralized
coordination language implemented in Java in which the central tuplespace
of Linda is replaced by a multitude of application-specific tuplespaces
owned by mobile agents. Whenever two mobile agents are located close to
one another, their tuplespaces are seamlessly merged to form a transiently
shared data structure [Murphy, Pietro, Roman 2001]. The advantage of
systems like Lime is that they provide simple ways to program resource-
discovery protocols and other common communication patterns in agent
systems. Limitations of the original Lime model have been partially
addressed in [Carbunar,Valente,Vitek 2001], but this area still requires
attention from both the formal and implementation sides. The most
challenging problem is, as usual, how to provide security guarantees for
applications using a coordination language in untrusted networks. Once
these problems are addressed, however, coordination languages will provide
a powerful way for mobile agents to communicate when operating inside ad-
hoc wireless networks. Moreover, the mobile agent will contain very little
communication code itself, since the necessary (and complex) functionality
will be encapsulated inside the coordination-language infrastructure.

Ad hoc networking in combination with mobile code is also investigated in
the field of active networking, where active packets, a kind of miniature
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mobile software agents, are used to deploy and execute customized routing
algorithms [Tschudin 2000].

The main technical, and social, obstacle to approaches based on mobile
software agents is security. Not only must researchers devise technical
solutions, but also users and organizations must become confident enough
in those solutions to permit foreign programs to migrate to and execute on
their machines [Farmer, Guttman, Swarup 1996; Tschudin 1999]. If the
department in charge of a military database is not convinced of the quality of
the security mechanisms, the department will never allow mobile agents to
visit the database. Although a mobile-agent application can still function (by
having its agents access the database from across the network), the
application will use more network bandwidth and suffer higher latencies.

Thus the security and containment of untrusted mobile code, and the
objective analysis of proposed security solutions, is a critical research area.
When a host receives mobile code, it ideally should evaluate the security
implications of executing that particular code, but at the least, it must
determine the trustworthiness of the agent’s sender (and programmer).
Failure to properly contain mobile code may result in serious damage to the
host or in the leakage of restricted information. Such damage can be
malicious (e.g. espionage or vandalism) or unintentional (programming
failures or unexpected interactions with other system components). Other
consequences of failing to contain mobile code include denial-of-service
attacks and the infiltration of privileged networks through a downloaded
Trojan horse or virus [Tschudin 1999; Volpano, Smith 1998; Necula, Lee
1998; Jeager 1999].

The symmetry of mobile-agent security concerns is remarkable as both the
agent and the environment in which it executes must be protected from each
other. Through purposeful engineering on the part of its developer, an agent
may seek to obtain restricted data from the host on which it is running on or
damage the host in some way. On the other hand, a host may seek to steal
data from or corrupt the agents that migrate to it [Sander, Tschudin 1997]. In
the civilian world, a (dishonest) company might gain an economic advantage
over a competitor via a malicious agent or host, while in the military world,
an adversary might gain a strategic or tactical advantage during an armed
conflict.

To relate the security issues to Java programming, we compare an agent to
an Applet, a Java program “embedded” inside a Web page and downloaded
and executed on a user’s machine whenever that user browses the web page.
The applet runs within an environment composed of several layers, the first
layer is the Java Development Kit (JDK) and its class libraries, the second
layer consists of the Java Virtual Machine, the third layer is the operating
system, and the last layer is the host device itself. The distinction between
these layers is important, since some layers may be easier to subvert than
others. For instance, an application may trust a server that belongs to a
known organization, but may not trust the libraries found on that server. In
Java, this trust mismatch can occur if some of the classes against which an
applet is linked have been downloaded from the network [Gong, Mueller,

Security
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Prafallchyandra, Schemers 1997; Wallach 1999]. There are two different
threats that must be considered when attempting to secure mobile-agent
applications:

- Exogenous threats: attacks occurring outside of the mobile-
agent system. For example, if a host is running both a mobile-
agent system and a Web server, an adversary might attack the
host via a “standard” Web server exploit, and gain access
without every attacking the mobile-agent system itself.

- Endogenous threats: threats specific to a mobile-agent system.

o  Horizontal hostility (malicious agents): Attacks between
agents running on the same host in which an agent tries to
disrupt the execution of other co-located agents.

o  Vertical hostility (malicious agents & malicious hosts):
Attacks against an agent by the execution environment, as
well as attacks against the environment by an agent.

In the remainder, we consider only endogenous threats, as they are specific
to mobile agents. There are two different viewpoints to take into account:

o For a host, it is necessary to provide protection mechanisms so that
agents cannot attack each other (horizontal protection) or the host
itself (vertical protection);

o For an agent, it may be necessary to protect it from attacks initiated
by the host (hostile host) and other agents (horizontal).

We now consider each issue in turn.

A number of techniques have been used in the past to place protection
boundaries between so-called “untrusted code” moved to a host and the
remainder of the software running on that host. Traditional operating
systems use virtual memory to enforce protection between processes
[Colusa 1995]. A process cannot read or write another processes’ memory
and communication between processes requires traps to the kernel. By
limiting the traps an untrusted process can invoke, it can be isolated to
varying degrees from other processes on the host. However there is usually
little point in sending a computation to a host if the computation cannot
interact with other computations there, load balancing being the only
exception [Malkhi, Reiter, Rubin 1998]. In the context of mobile agent
systems, an attractive alternative to operating system protection mechanisms
is to use language-based protection mechanisms [Volpano, Smith 1998].
The attraction of language-based protection is twofold: precision of
protection and performance. Language-based mechanisms allow access
rights to be placed with more precision than traditional virtual-memory
systems, and the cost of cross-protection boundaries can often be reduced to
zero, since checking is moved from runtime to the language compiler
[Jensen, Metayer, Thorn 1998; Goldberg 1998].

Malicious Agents
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Safe Languages. The requirement for language-based security is, first and
foremost, safe languages. A safe language is a language that enforces
memory safety and type safety. In other words, a safe language does not
permit arbitrary memory modifications, and carefully constrains how data of
one type is transformed into data of another type. The objective of a safe
language is to permit reasoning about security properties of programs at the
source level in a compositional manner. It should be possible to check the
code with automatic tools to obtain the guarantee that the mobile agent is not
malicious. For this to be the true, it is necessary to produce assured
implementations of safe languages, that is, implementations that do not
contain hidden security vulnerabilities. Well-known examples of safe
languages include Java and SafeTCL [Gra97; Gong, Mueller,
Prafallchyandra, Schemers 1997]. The Telescript agent language is a case of
a safe language explicitly designed for secure mobile code [Tardo, Valenta
1996]. Traditional languages, such as C, do not ensure memory or type
safety, and thus, it is much more difficult to obtain trust in agents written in
those languages. Even in safe language, there are many opportunities for
security exploits. After many years, the research community is closer to
producing assured implementations of the Java programming language, but
much work remains. The survey by Moreau and Hartel lists several
hundreds papers on formalizing aspects of Java [Hartel, Moreau 2001]. The
difficulty in obtaining a clear specification of all aspects of Java underscores
the need for research in semantics and formal techniques without which
there can be no hope of obtaining any assurance.

Sandboxing. Protection against vertical attacks is achieved by enforcing a
separation between the user code and the system, a technique popularized by
the well-known Java-sandbox security model; related approaches have been
used in operating systems [Gong, Mueller, Prafallchyandra, Schemers 1997;
Grimm, Bershad 1999; Jones 1999]. In this model user code runs with
restricted access right within the same address space as the system code.
Security relies on type safety, language access control mechanisms and
dynamic checks. Over the years, a number of faults were discovered and
fixed in this model [Wallach 1999; Wallach, Balfanz, Dean, Felten 1997;
Jensen, Metayer, Thorn 1998; Goldberg 1998]. The sandbox model is a
basis for building more powerful security architectures that are suited to
agent systems [GMS97]. Sandboxing alone does not provide protection
against horizontal attacks. For this, it is necessary to extend the protection
model to include protection domains, which constrain how one agent can
interact with another. Protection domains can be constructed in a safe
language by providing a separate namespace for each component. Fully
disjoint namespaces are not desirable as they result in disjoint applications
[Malkhi, Reiter, Rubin 1998]. Instead, if mobile agents must interact, some
degree of sharing among namespaces is necessary. Several research systems
have tried to provide better isolation of Java applications [Von Eicken,
Chang, Czajkowski, Hawblitzel 1999; Bryce, Vitek 2002], but these attempts
achieved limited success due to the constraint of working above commercial
Java Virtual Machines (which allow only certain kinds of extensions to
Java’s basic security mechanisms). In the future, protection domains must
be integrated into the Java Virtual Machine definition.
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Denial of Service. Mobile agents can mount denial of service attacks by
using an immoderate amount of CPU or memory. An environment for
mobile agents therefore must provide support for tracking memory and CPU
usage, as well as support for termination. Termination implies stopping all
threads of an agent and reclaiming its memory. Current Java systems fail to
protect the Java Virtual Machine against denial of service attacks, since they
support neither resource accounting nor full agent termination. Providing
efficient accounting and termination support in a language-based system
remains an open research problem.

Beyond Safe Languages. Safe languages must ensure that an agent’s code
obeys certain well-formedness rules. In the case of Java, this assurance is
obtained by verifying the bytecode of incoming agents with a complex data
flow analysis algorithm [Goldberg 1998] and by imposing some constraints
on how programs may be linked [Jensen, Metayer, Thorn 1998]. A large
body of research on proof-carrying code [Necula, Lee 1998] is trying to
broaden the set of agent languages to traditional unsafe languages such as C.
Proof-carrying code associates a security proof with each program. The host
need only check that the proof matches the program to determine whether
the program obeys the desired security properties. Checking a proof against
a program is computationally much easier than analyzing the code directly to
generate the proof, making proof-carrying code an attractive approach. This
direction of research is encouraging, as it may allow the expression of
complex security properties, and verification of a program’s compliance with
those properties.

In mobile-agent computing, an agent’s owner must be able to trust that it is
not subverted when visiting a series of servers, some of which may have
been compromised and made capable of malicious action against the agent
[Sander, Tschudin 1997]. Malicious servers are a particularly difficult
problem, since the server must have access to all of the agent’s code in order
to execute it. A small body of research has attempted to solve this problem.
The solutions fall into the following categories:

1. code signing,
2. replication,
3. partial result authentication codes,
4. trace validation,
5. secure coprocessors, and
6. encrypted functions.

We will assess each approach in the following paragraphs.

Code Signing can be used to protect agents from malicious hosts by
attaching digital signatures to the code of the mobile agent. Code signing is
being used by Sun and Microsoft to provide guarantees of authenticity for
downloaded code [GS98]. The technology can be used to ensure that a
server has not altered the code of an agent while in transit. Code signing
does not protect the agent’s data from being modified, nor does it prevent
the server from accessing the information contained in the agent, but it does

Malicious Hosts
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provide a basic level of assurance that it is essential for warfighter
applications. Furthermore in a network in which servers can not be
compromised and agents come from a single source code signing may be
the best solution to security. This scenario fits many of the warfighter
requirements. With the exception of coalition operations most warfighter
applications are expected to rely on code signing.

Replication was studied as a general method for mobile agent computation
security, marrying some ideas from the fields of fault tolerance and
cryptography [Vogler, Moschgath, Kunkelmann 1997; Roth 1999]. The
approach relies on the replication of agents and servers. The same agent
computation is performed on several servers. Voting then can be used to
move from one phase of a distributed computation to the next. While
replication enjoys some pleasing theoretical properties, it is heavily restricted
in practice. It supposes that computations are deterministic, and that several
servers with the same resources are available. The connectivity assumptions
also are not appropriate in warfighter scenarios, making it unlikely that
replication can play a large role in warfighter applications.

Partial Result Authentication Codes are very similar to message
authentication codes (MAC). Instead of authenticating the origins of a
message, however, they authenticate the correctness of an intermediate agent
state or partial result. For example, if we consider the values of selected
program variables at some point during execution, we can determine whether
those values could possibly have arisen from normal program execution. If
not, the program has been altered in some way. PRACSs are
computationally cheaper than digital signatures and have slightly different
security properties (forward integrity): if an agent visits n servers and some
server in m (m<n) is malicious, the results of servers 1 to m-1 cannot be
falsified. In the warfighter scenarios, mobile agents often do not have
intermediate results. Nevertheless, this approach can be used to ensure that
results of a disconnected query are truthful [Hohl 1997].

Proof Verification is an approach in which a digitally signed trace of an
agent’s computation is returned along with the result. This trace can then be
validated – a malicious host would affect the agent by changing the results
and thus producing a trace that does not correspond to a valid computation
[Vigna 1998]. Although techniques for producing compact traces have been
developed, the size and complexity of the trace remains an issue. It is
unlikely that this approach will be practical in warfighter applications.

Code obfuscation aims at protecting a mobile agent’s functioning by making
it very hard to divert the agent’s execution in a meaningful way. This is
achieved by transforming the code such that automated reverse engineering
cannot be applied. This prevents a malicious host from locating the places in
the code that should be modified or that should be executed in a non-
conformant way. Also, variables can be split all over the program in order to
make simple read-outs impossible. Although there are many tools and also
commercial products that use code obfuscation, especially in the field of
digital right management, recent theoretical results point at the impossibility
to achieve perfect obfuscation [Barak 2001].
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Secure Coprocessors involve building a trusted execution environment for
agents within a secure coprocessor [Wilhelm, Staamann, Buttyan 1999; Yee
1999]. This approach is based on tamper-proof hardware and public key
infrastructures. Some experimental systems have been designed, but not
validated. Secure co-processors have the potential of providing appropriate
security for mobile-agent programs, but at the cost of upgrading to more
expensive hardware. Secure coprocessors will be useful in some warfighter
applications, but not in all (or even the majority). However, trusted
coprocessors might be the only hard security anchor available today for
securing mobile agent applications.

Encrypted functions that can be executed in their encrypted form are a
software-only cryptographic approach to the malicious host problem. If
available, this would be the ideal way to protect any mobile agent and its
payload. The approach of computing with encrypted functions was
demonstrated in [Sanders, Tschudin 1998], another system was proposed in
[Loureiro 2001]. The conclusion is that for special functions it is possible to
let a mobile agent protect itself from a malicious host without having to rely
on trusted hardware or on-line help from remote agents. However, the
solutions proposed seem to be impractical for today’s standards and no
implementation has been reported so far.

Mobile agents systems require extensive research to ensure that agents can
execute securely. The majority of the research effort has been devoted to
developing secure language-based systems. With the exception of the work
of Gray [Gray, Kotz, Cybenko, Rus 1998] and Peine [Peine 1998], mobile-
agent systems are single-language environments. The majority of mobile-
agent systems today use Java and its security model as a starting point. Java
provides adequate security to protect a host from the agents that are running
on it, but still lacks mechanisms for protecting agents from one another and
for accounting for resource usage and enforcing termination. These technical
issues must be addressed to obtain robust mobile-agent systems. The state
of research on the protection of agents against malicious hosts does
suggests that solutions are not immediately forthcoming, but this problem is
one that is shared with any distributed system, as nodes may be
compromised and then the results of any request invalidated.

Risks
The main risks associated with mobile-agent technology are related to
security. Although existing systems provide sufficient host and agent
protection for many applications, as of this writing, it is not possible to
guarantee the security of a mobile-agent application running in a mixed
network in which some agents and some hosts may be compromised. The
integrity of mobile-agent hosts may be compromised through a range of
cyber-attacks, leading to issues such as denial of service for critical tasks and
loss of privileged information.

Aggravation of risks. Once a mobile-agent host is compromised, malicious
mobile agents can be sent easily to any other mobile-agent host, unless

Summary
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complex security mechanisms are in place. Thus, an organization’s own
mobile-agent system could become a weapon against it, as an attacker
launched a flood of malicious agents from a single compromised host. Up to
now, these threats have been mostly theoretical, but a widely deployed
mobile-agent system would represent an attractive target and tool for hackers
and cyber-terrorists. The threats range from the difficulty to contain
information to general service disruption. Furthermore, the existence of a
standardized common space where mobile agents can persist over long
periods of time also creates risk clusters and potentially enables new forms
of long term stealth attacks.

Mitigation of risks. The progress made in the last few years in the fields of
computer security and formal verification suggests that automated checking
of many security properties is possible. Moreover, other technologies for
Internet programming suffer from the same or similar security. Even if
mobile agents are not accepted, the same security issues must still be
addressed. Mobile code also enables new forms of active and extremely
rapid responses in case of attacks on the computer infrastructure, which
would not be possible with the current model of static software deployment.
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Forecast
Our forecasts assume a reasonable level of funding in mobile agents
research and in related technologies such as the PCES program from
DARPA which supports the development of Real-Time Java (RTJ). RTJ is a
key enabling technology for mobile agent technologies in many of the
warfighter scenarios.

Forecast
Tables
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Technology
element

Near term
2 0 0 1 - 2 0 0 3

 Midterm
2 0 0 4 - 2 0 0 6

Long term
2 0 0 7 - 2 0 1 0

Mobility Technologies

Mobile Agents • Experiments with MA
systems with strong
mobility deployed in
medium scale mixed
networks (scale to1K
agents).

• Development of MA-
based management
tools for network
monitoring and
debugging.

• Open source MA toolkit
built on top of a
customizable virtual
machine framework
allows researchers and
companies to
experiment with
extensions and new
implementation
technologies.

• Research in foundations
of MA systems produce
the first definition of
complex MA language.

• Experiments with
interoperability of
agents systems
developed in
different MA
languages and
systems (scale to
1000K agents).

• Development of MA-
based network
security
infrastructure.

• Production-grade
strong mobility
implementations are
released.

• Embedded, Real-
Time MA system
implemented based
on Real-Time Java.

• Program verification
technology for MA
systems obtains
first results on real-
life systems.

• Experiments with MA
systems supporting
physical mobility as well
as logical mobility (UAV).

• First embedded devices
with software entirely
composed by mobile and
hot-swappable code.

• Widespread deployment
of MA network
management and
security infrastructure.

• High-efficiency MA
systems become
widespread, performance
equivalent to native,
statically compiled, code.

• Mobile-agent platforms
included in commercial
operating systems.
Standardization of MA
language and interaction
protocol.

Coordination
languages

• Research prototypes for
coordination in small-
scale ad-hoc networks
with host mobility.

• Intelligent resource
discovery prototype for
wireless devices.

• Adoption of an XML-
based coordination
language for small
devices.

• Semantics of
coordination
languages codified.

Adoption of standardized
coordination protocols for
wireless devices.
• Integration of MA

technology with
coordination languages.

Mobile agent
security

• Resource accounting
and termination support.

• Verification of agent
compliance with
complex security
properties

• Protection domains
and non-
interference
guarantees widely
available.

• Proof-carrying
techniques for unsafe
languages widely
deployed.

• Offline policy tools for
protecting against denial
of service attacks.
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Summary and Recommendations
Mobile agent and coordination technologies are a focus of many commercial
software development environments, but widespread adoption awaits
consensus on communication and mobility standards, as well as assurances
of scalability, security, control, and robustness that will be provided by
mature community infrastructure capabilities. We recommend focused,
limited use of interim non-standardized mobility until commercial standards
and infrastructure allow it to be adopted in a more universal fashion. For
example, using mobile agents to deploy new functionality from a United
States headquarters to a United States warfighting team is efficient and
secure with current systems, but building an infrastructure for Coalition
operations based entirely on mobile agents must await further research and
development.

We make the following recommendations for further investment in research:

• Dynamic languages: Dynamic programming languages will likely
remain the key technical element for building product-grade agent
systems. Developing dynamic languages for embedded and real-time
systems will be particularly important for many warfighter
applications. Research in foundation and implementation of mobile
languages is thus essential to further develop our understanding of
the issues and realize the possibilities offered this paradigm. In the
long run, the interworking of mobile agents written in different
languages and working across mobile code layers should also be
studied.

•  Open source platforms: Freely available infrastructures are
essential to obtain reliable and secure mobile technologies. Current
proprietary systems are a roadblock to research and development of
innovative agent solutions, furthermore they present some serious
security risks as their implementation is shrouded in secrecy and has
not been subjected to the kind of rigorous scrutiny that has
strengthened many open source systems. One of our most important
recommendations is to support the development of several open
source mobile-agent technologies. These technologies will form the
basis for research and commercial products, and the most successful
technologies will be standardized.

•  Hands-on Experiences: Large-scale experiments are required to
better separate what is technically feasible from how mobile agents
are most useable. Especially the problem of automated management
of a mobile agent infrastructure should be investigated, most
prominently with a mobile agent approach itself in order to benefit
from the extensibility provided by mobile code.
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•  Security: Information assurance remains an important issue in
mixed networks, if mobile agents are to be deployed in untrusted
settings. A commitment to research on a broad spectrum of security
techniques for mobile code and their integration is needed to provide
the necessary security guarantees. Because mobile code is used at
many more places than just mobile agents these results will be of
general applicability to wide-area programming.
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Infrastructure for Software Agents

Brief Overview

This chapter describes the infrastructure required to support the lifecycle of
software agents. The infrastructure components can be subclassed into two
distinct groups: a set of requisite core services and a set of management services
and tools. This chapter differs from the agent architecture section – whose focus
is on the architecture internal to software agents. In contrast, the focus of this
chapter is the architecture of components external to software agents.

There are several research and standardization programs underway to model,
standardize and develop infrastructure for agent-based and other distributed
systems. These include the DARPA CoABS (Control of Agent-Based Systems)
Grid [Global InfoTek, Inc. 2002], the FIPA (Foundation for Intelligent Physical
Agents) [Foundation for Intelligent Physical Agents 2002], Java™ Agent
Services [McCabe 2002], the Grid Computing / Global Information Grid efforts
[Global InfoTek, Inc. 2002], as well as peer-to-peer networking architectures
[Barkai 2002, Miller 2001].

The Technical Description section identifies the challenges faced in developing
infrastructure for software agents and outlines the broad set of requirements for
such an infrastructure. The subsequent technology survey reviews the programs
mentioned above.

Unlike the other chapters that describe internal agent technology components,
this section does not have a section on the relevance to the warfighter.

Using infrastructure does not explicitly introduce any risks into software agent
systems. Well-designed infrastructure can actually mitigate risks that other
agent technologies might introduce.

Improvement in scalability is the major factor that we expect to change in the
next few years. Scalability is defined in two dimensions with the first dimension
being the number of agents that interoperate. We expect that infrastructure can
support 10s to 100s of agents now, 1000s to 10000s of agents in a few years,
and upto millions of agents in 10 years. The second dimension may be

Description

Relevance to the
Warfighter

Risks

Forecast
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described as the “breadth” or “spread” of the agents i.e., the number of
different organizations, administrative domains, and countries that may be
spanned by agents. Currently, few agent systems span multiple organizations
and administrative domains and multiple countries. We expect to see a
progression where agent systems will truly be global in scope in 10 years.

Infrastructure needs to address challenges such as security, scalability,
robustness/fault tolerance, efficiency, accessibility, and interoperability. While
somewhat similar to distributed systems, software agents have a number of
characteristics that are unique. Software agent infrastructure needs to address
agent specific requirements although it can build upon existing research and
implementations of distributed system infrastructure.

Our recommendation in this area is that research should be continued in both
the distributed systems infrastructure area as well as the software agents
infrastructure area. Key challenges such as scalability, distributed security,
administration and management tools, and deployment must be addressed.

Many of the issues discussed in this chapter are the subject of ongoing work.
This needs to be both encouraged and made use of where possible. Other areas
currently have a lower commercial priority, such as high-level security and
deployment, and as such will require more extensive investigation and
development.

Summary and
Recommendations
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Technical Description
Software agents require a set of external (to the agent) capabilities in order to
function – these are collectively referred to as the infrastructure. The
infrastructure will typically consist of a several services and management
components that are normally provided by operating systems, middleware, or
other frameworks. This chapter describes these infrastructural components and
services, classifying them as either core services or support services. Core
services are compulsory regardless of application domain and defined as those
without which an agent cannot effectively exist. Examples include message
transport, registration and lookup, and identity-generation. Optional services
include authentication, encryption, resource management, persistence, logging,
debugging, visualization, and deployment. Support services also include
management tools used by parties other than the agent, such as the owner of the
agent or system, for administration purposes.

Sometimes, the choice as to whether a capability belongs at the agent level or at
the infrastructure level may seem ambiguous. One deciding factor is the scope
of the capability or service. If the scope is narrow and specialized, the capability
may belong at the agent level. Often, as capabilities mature, become generalized,
and start to be used by other components, they migrate to the framework,
middleware, or operating system layers.

Agent-based systems have many characteristics that overlap with distributed
systems and hence have similar infrastructure requirements. However, there are
several important differences. Distributed systems usually have distinct service
providers (services) and service consumers (clients). A service provider makes
itself available through a relatively static advertisement. Short-lived consumers
discover the service, interact with it (typically in a transactional manner), and
then disappear. While services may maintain some long-term state (e.g. a
database), the client-service relationship is bounded as a “session”. Finally, the
execution model is essentially a client-driven transaction.

On the other hand, agent-based systems are often peer-to-peer. That is, agents
both provide and consume services of other agents (this does not imply that
there cannot be specialized agents that are only service providers and vice-
versa). Agents are uniquely identified long-lived entities. Furthermore, they are
“social” entities, in that they may use a model of other agents – identities,
capabilities, states, maybe reputations – in determining how to cooperatively
solve problems. The lifetime of an agent, or of its social context, is not restricted
to a simple session. The lifetime of an agent may exceed that of the system that
hosts it, or indeed the software components from which it is implemented.
Therefore, the infrastructure needs to provide mechanisms that allow the hosts
(and even the infrastructure itself) to be updated while preserving the state of an
agent.

Comparison
with Distributed
System
Infrastructure
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Another important difference is concurrency. In distributed systems, clients
request services through remote procedure calls (RPC) or equivalent mechanism
and usually wait for the service request to be satisfied. Only the services need to
handle concurrency, which arises in the form of multiple overlapping requests.
Agent-based systems are more complex because agents are computationally
autonomous with their own threads of execution. While inter-agent messages
may stimulate processing, concurrent execution is the norm, with all of the usual
attendant complexities. Moreover, the concurrency goes beyond servicing
multiple overlapping requests to handling asynchronous messages that interrupt
and affect the concurrent processing activities of the agent.

Finally, software agents may be mobile, allowing them to move (or be moved)
from one host to another. Mobility introduces additional requirements in all
aspects of infrastructure. Mobility may also help provide infrastructure-level
capabilities such as long-term survivability.

Despite the above differences, software agent infrastructure is often built as a
layer on top of distributed systems infrastructure. For example, the CoABS
Grid [Global InfoTek, Inc. 2002] is built on top of Jini [Oaks 2000, Sun
Microsystems, Inc. 2002, Sun Microsystems, Inc. 1999]. In such cases, the
constraints of the underlying de facto or de jure distributed computing
infrastructure may affect the realization of the software agent infrastructure.1

Designers of software agent infrastructure face a number of challenges. The
majority of these challenges arise from the simple fact that agent systems are a
superset of distributed computing systems, and distributed computing is hard.
[Woolridge 1998]. Since these challenges are not unique to software agents, we
present an overview here but do not discuss them in detail. For more detailed
discussion of these issues, consult [Birman 1996, Mullender 1993, Tanenbaum
2002]. However the characteristics of agent systems offer new challenges and
change the perspective on the traditional challenges.

Security is an important challenge and applies not only to providing necessary
security services (such as authentication and encryption), but making sure that
the services provided by the infrastructure are secure. For example, one of the
services provided by the infrastructure is registration and lookup. In order for
this service to be secure, mechanisms must be present to protect one agent from
changing/deleting registry information belonging to another agent (which could
lead to a large set of security problems). Another challenge for the infrastructure
is to protect against external attacks, such as denial of service, on the services.
Using the example of the registry again, guards should be in place to prevent
any entity from repeatedly performing operations on the registry, whether
maliciously or not, that are detrimentally affecting the service.
                                                
1 A simple example: the original FIPA model allowed the use of an arbitrary predicate in
agent lookup. However, agent registry systems based on, e.g., LDAP, or Jini‘ lookup only
support simple single-level attribute matching. Should the implementation try to provide full
FIPA semantics, or be limited to what commercial systems can support?

Challenges

Security
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New security challenges arise given that agents are autonomous entities that
represent and act on behalf of humans. A key challenge is establishing
distributed trust among social agents.2 Preserving long-term identity, protecting
identity from theft, and non-repudiation are challenges unique to software
agents. Some of these challenges are considered in this infrastructure section
while others are addressed in the architecture section.

Infrastructure components must be carefully designed to support the
construction of large-scale agent-based systems. Scalability can be improved
through open interoperability and the application of well-known design
principles such as decentralization, replication, and parallelism. Open
interoperability implies that a greater range of components can be employed by
agents, thereby aiding scalable growth. Designing for scalability inevitably
means introducing new mechanisms – coordination, data synchronization, and
so forth. Distributed approaches are almost always more complex than
centralized algorithms. Therefore, it is important not to “over design” systems
which are intended for small-scale deployments.

Infrastructure must be reliable in order to support long-running agent systems
that are able to continuously execute on the order of several years. Heavily-
loaded systems must robust and continue to operate as designed. Moreover, the
system should be fault-tolerant i.e. reliable under extreme, abnormal or
unexpected conditions. Extreme or abnormal behavior occurs when a system is
subject to situations beyond expected operational and performance related
conditions. Examples of unexpected conditions include failures of systems and
information warfare and kinetic (i.e., physical) attacks. Persistence services and
techniques such as replication can help improve the robustness of the
infrastructure.

Agents place differing requirements on the availability of services depending
upon their importance to the agent lifecycle. For example, a transport service is
considered ubiquitous and as such is required to be available at all times for
inter-agent communication. The failure of such a service would have a direct
impact on the performance of the overall system. Other, non-essential services
may only need to be available as a function of the agent’s transient task or
behavior.

Efficiency is a measure of the overhead introduced by the infrastructure. The
amount of overhead depends on the “heavyness” of the infrastructure. An
infrastructure that tries to address challenges such as security, reliability,
robustness, and interoperability often incurs higher overhead and is therefore
less efficient. For example, robustness may be achieved through replication,
which in turn adds significant overhead. Another example is using XML
encoding, which is more verbose (and hence adds overhead) but greatly
enhances interoperability.

Accessibility is sometimes not considered as a challenge for infrastructure. By
                                                
2 A reputation server is an example of a service that allows agents to decide on the level of
trust to be placed in other agents.

Scalability

Robustness /
Fault Tolerance
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accessible, we mean that the infrastructure should be easily obtainable and
useable for all the required platforms (mainframes to personal computers to cell
phones). Infrastructure can be free at the source level (as in open-source
products), free at the binary level, or be a commercial product.

Even if a particular architecture is freely available, the possibility that that one
architecture will be used in all agent systems is unlikely. In reality agent
systems are often heterogeneous in nature. As such, an infrastructure must be
designed to manage a flexible collection of services according to the
requirements of the agent. Therefore, interoperability is an important
consideration. Typically, interoperability is achieved through common standards
[Object Management Group 2002, Foundation for Intelligent Physical Agents
2002, McCabe 2002]. In addition, one should assume that there will always be
competing standards and therefore it is important to embrace heterogeneity.
CoABS is an example of an approach to not define common standards but to
build mechanisms to interconnect the different architectures [Global InfoTek,
Inc. 2002].

This caught me out – the next section heading is at level 3, not level 4, but it’s
visually indistinguishable from the level 4 headings.

The requirements for software agent infrastructure fall into two categories: tools
and services. Tools support developers to create and debug agent-based
software and help users to deploy and manage agents. Services, on the other
hand, are used by agents at runtime. The availability of services simplifies the
task of agent developers. This section describes both tools and services that are
part of and/or provided by the infrastructure for software agents.

Services themselves can be further categorized into core services and optional
services. Core services include specifically, although not exclusively: Message
Transport, Registration and Lookup, and Identity Generation. These are the
minimum set of infrastructure services required to support the agent lifecycle.
The following sections discuss the core services followed by the optional
services and conclude with discussions of tools.

Message transport is the communication mechanism used by agents to
exchange messages. All agent architectures rely on the existence of
infrastructure that provides a message transport service. The type of the
messaging service can be characterized in two dimensions: synchronous –vs-
asynchronous and one-way –vs- sequenced (e.g., request reply). Synchronous
messaging blocks the sender of the message while the message is being
transmitted whereas asynchronous messaging queues the outgoing message in a
buffer and allows the sender to continue immediately. In the case of
synchronous messaging, the duration for which the sender is blocked can vary.
In the case of asynchronous messaging, the send operation may fail if the
buffers are not able to contain the message

One-way messaging implies that the sender does not wait for a reply. Usually,
one-way messaging is used with asynchronous messaging. When required,
one-way messaging is combined with synchronous messaging to provide the
sender with delivery confirmation.

Interoperability

Requirements

Core Service:
Message
Transport
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Sequenced communication implies that multiple messages are transferred in a
given unit of communication – typically identified as a conversation fragment. A
state transition diagram or interaction protocol can be used to map the
relationship between the messages that make up the sequence. The simplest
form of sequenced communication is request-reply messaging, where the sender
sends a message, which is received by the receiver, which then generates a reply
that is sent back to the sender. Mechanisms such as RPC [Bloomer 1992] and
RMI [Remote Method Invocation 2002] provide request-reply semantics. More
sophisticated sequenced communication is provided by toolkits such as KAoS
[Graves 2002, Bradshaw 1997], which provides support for arbitrary state-
transition diagrams that can enforce the sequencing of messages.

Message transport may be implemented on a variety of communication
mechanisms such as Sockets over TCP or UDP [Stevens 1999], RPC [Bloomer
1992], RMI [Remote Method Invocation 2002], or SOAP [Simple Object
Access Protocol 2000]. It may also use higher-level messaging services, such as
IBM MQSeries [IBM 2002] or various implementations of the Java Messaging
Service [Sun Microsystems Inc. 2002] standard. The message transport service
may, in fact, use a variety of communication mechanisms transparently to the
agents, using transcoding gateways to interconnect the dissimilar technologies.
(This is particularly common if the agent system includes wired and wireless
platforms.)

Message delivery to the receiver may be accomplished through polling or
through a callback mechanism. With polling, the message transport service
queues messages in a mailbox; the receiver then has to periodically check the
mailbox for any new messages. With callbacks, on the other hand, the message
transport service invokes a callback function to notify the receiver of the
availability of the message (or to just deliver the message).

Mobile agents place additional demands on message transport. The challenge
arises from fast moving agents that leave a host before a message destined for
the agent arrives at the host. Forwarding of the message by the first host to the
new host of the agent may not work if the agent continues to move through the
network. Different approaches including the use of home agents as in Mobile
IP [Perkins 1998] and proxies [Tan 2002] have been explored. The worst-case
scenario is that the message continues to follows the agent but never reaches the
agent but [Murphy 1999] discusses an approach to placing constraints on
mobility to provide guaranteed message delivery.

Registration and lookup services allow agents to advertise their existence and
properties, primarily so that other agents may locate them. A registry is
essentially a directory that stores meta-information in the form of agent
descriptions. Operations typically include registration, deregistration,
modification and querying of registry entries.

The content of an agent description stored in the registry should at the very
minimum include the agent’s unique identity and one or more communication
addresses. Additional attributes may include a user-friendly name, the
communication languages and ontologies supported by the agent, and

Core Service:
Registration and
Lookup
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information about the owner and author of the agent. The physical location of
the agent may also be stored if that is an important attribute. Additional
application-specific information may also be included, for example if an agent
charges for for some service it delivers, the registry can include usage and
charging specific information. Finally, the registry may also include the public
keys (or digital signatures) of agents in which case the registry acts as a key
store or a certificate authority.

Registries need to address similar scalability issues to those of directory
services in distributed systems. Specifically, scalability is a concern depending
on the number of agents and the frequency and nature of queries and updates.
Often this is solved with some form of federation. Some recently successful
models include the registry services used by messaging clients such as ICQ
[ICQ 2002], AOL Instant Messenger [America On-Line 2002], and Windows
Messenger [Microsoft Corp 2002b].

Another challenging issue is keeping the registry up to date. Agents that rapidly
change their attributes make it difficult for the registry to accurately reflect the
state of the system. An example is storing the current location of a mobile agent.
If the mobile agent moves quickly from host to host, keeping the registry
updated with the current location of the host is difficult. When necessary, a
registry can offer an indication of how recently an entry was updated, although
realistically no assumption can be made by a querying agent, other than that the
received information is current and correct.

Long-lived agents present a different kind of problem: how to ensure that
registry information can survive changes to the registry infrastructure itself.

Query based lookup involves searching the registry for key or template based
matches. The simplest form of lookup would be a single key match, such as the
agent identity. Typically the returned results will consist of a set of agent
descriptions that fit the partial or complete search criteria. For a large agent
population, the volume of information may be large, and it may take a significant
time to perform the query. It is therefore wise and often useful to apply search
constraints, such as a limit on the number of returned results and depth in
searches across federated registries.

The type of registry dictates the complexity of the search query. For example,
some registries may accept predicate based matching criteria. The predicate is
usually a logical modifier that enhances the expressivity of the registry matching
function.

An example of a predicate-based lookup is finding agents that satisfy certain
geometrical relationships in terms of their physical location. An agent on a
camera device facing northwards might need to contact an agent within the same
vicinity that is facing eastward. In such a case, the first agent can construct a
predicate that takes into account the position of the first agent and evaluates the
relative position and orientation of another agent. This predicate can then be
given to the lookup service to obtain a list of candidate agents.

The power and flexibility of a predicate-based approach comes at a price. Not
only must the client agent be capable of constructing and transmitting an
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arbitrary predicate; the registry service must be able to process it safely and
securely. This is likely to be computationally expensive. More seriously, the use
of any complex query system means that one cannot take advantage of existing
mechanisms such as LDAP or Jini‘. As usual, there are costs and benefits to
be weighed in making a design decision.

A registry provides a single point of control and authorization for a multi agent
system. (This is true even if the actual implementation of the registry is
distributed to enhance performance and availability.) If a multi-agent system
spans organizational boundaries, each participating organization may insist on
operating their own registry that implements their particular policies. In this case
the registry systems must support some form of federation model, so that
registrations and search requests can operate across multiple registries.

Federation of registries is a complex issue but essentially implies
interconnectivity of registries to form a distributed resource [Gnutella 2002,
Clip2 2002]. In its simplest form registries will reference one another to form a
web-like structure. Obvious problems with this type of structure arise when
considering such issues as consistency of multiple registrations for single
agents. Additionally, federation is very much a technology-specific feature of
individual registries, such as LDAP [Howes 1997] or UDDI [UDDI 2002,
UDDI 2000].

Federation may affect the programmatic interface to the registry service, to
provide control over the scope of registrations and searches. It will also affect
the security aspects of the registry. As was noted earlier, it is essential that
registry information should not be changeable by unauthorized parties, in order
to prevent denial of service or impersonation. In a federated scheme, each
system must be able to trust the access control security of all other registries.

It should be noted that infrastructure services may also be published in a
separate, but complimentary registry. This provides a known location where
agents can seek required services. Ideally, agents and infrastructure services
should not be referenced in the same registry as they have different operational
semantics.

Identity generation or naming is the last of the core services that must be
available to any agent at startup. This service has but one function, to provide
(globally) unique, semantic free, non repudiable identifiers for application as
agent names. Uniqueness can be assured by generating a sufficiently complex
identity, such as a 128 bit sequence. To be semantically free, the name should
have no additional meaning attached to it other than the fact it is some nebulous
and arbitrary identifier.

Authentication allows entities in an agent-based system to securely identify
themselves to each other by presenting credentials. Once identification is
successful, trust relationships can be established between the entities.
Authentication is required between agents and humans, agents and agents,

Core Service:
Identity
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agents and their host platforms, as well as agents and other systems.

Passwords, Kerberos [Kerberos 2002], and Public Key Cryptography
[Schneier 1996] are traditional approaches to authentication. Password
authentication relies on the exchange of a secret word that was previously
configured or agreed upon. Kerberos provides a more secure form of
authentication by not sending passwords over network connections [Kerberos
2002]. Public Key Cryptography [Schneier 1996] (also referred to as
Asymmetric Key Cryptography and PKI – Public Key Infrastructure) is a
different approach to authentication. PKI uses a pair of keys in conjunction so
that one key is used for encryption and the second key is used for decryption.
Authentication can be provided by keeping the encryption key private whereas
secure transmission can be provided by keeping the decryption key private. Two
pairs of keys can be used in conjunction to achieve both authentication and
secure transmission.

In PKI, keys may be stored in a variety of ways. Keys that are published are
often stored in a certificate authority (CA). Entities must be able to retrieves the
keys of other entities reliably for the CA. Spoofing (returning the wrong public
key) results in a breakdown of the security offered by PKI. Private keys must
be stored in a secure manner and never released to other entities. One approach
to storing the private key is to rely on a physical device such as a smart card.

Mobile agents complicate PKI key security. For a mobile agent to be able to
authenticate, the agent would need to carry a private key as it moves to various
hosts. In a multi-hop scenario, an agent would have to authenticate to a remote
host while executing on a foreign host. However, a mobile agent running inside
a foreign execution environment is completely at the mercy of the foreign
system. Currently, no mechanisms exist to protect the mobile agent from
inspection (and consequently, extraction of the private keys). [Jansen 1999].

The WWW has resulted in the introduction of new authentication methods such
as Microsoft’s .NET Passport [Microsoft Corp. 2002]. In this approach, an
entity authenticates with a central server, which is then trusted by third parties.
Once the initial authentication is completed, no further authentication is
necessary with each individual web site.

Authentication can be implicit under some circumstances. For example, a multi-
user operating system authenticates users when they login into the system. If
that user were to then execute or interact with an agent running on that system,
the agent can implicitly authenticate the user based on the credentials already
presented by the user to the operating system. Depending on established trust
relationships, the implicit authentication can extend to other systems. However,
multiple overlapping trust relationships complicate authentication rules and
could lead to unexpected results.

Agent systems introduce some new complications into the area of
authentication. In most distributed computing systems, it is reasonable to
perform authentication once at the beginning of a session, trusting that the
credentials thus obtained will remain valid throughout the session. For a long-
lived agent, no such assumption is warranted. It becomes necessary to consider
the issues of certificate expiry or revocation for the agent, the human principal
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on whose behalf the agent is operating, or even the agent platform.

Encryption mechanisms are a critical part of the infrastructure. While they may
not be used directly by agents, several other infrastructure services such as
authentication, message transport, persistence, and logging.

Two broad categories of encryption services exist: public key and secret (or
private) key. Numerous secret key algorithms exist such as DES, 3DES. The
advantage of secret key algorithms is efficiency in terms of encryption and
decryption speed. The disadvantage of secret key algorithms is key-
propagation. If the encryption and decryption need to be performed at different
sites (as in the case of encrypted messaging), then the secret key needs to be
communicated between the encrypting and decrypting endpoints. If the key is
communicated through an insecure communication channel, the security of the
messaging can be compromised. [Schneier 1996]

Public key algorithms use an asymmetric encryption approach where the
encryption and decryption keys are different and while they are related, it is
computationally hard to derive one key from the other. Given these two
properties, public key algorithms make it convenient to publish one key
(referred to as the public key) while keeping the other key secret (referred to as
the private key). Public key cryptography may be used for secure transmission
of data or for authenticating the source of the data (digital signature). [Schneier
1996]

One of the disadvantages of public key algorithms is high computational
complexity resulting in poor performance. A second disadvantage of public key
cryptography is the infrastructure necessary to make the public key available.
The public keys are published in a directory called the Certificate Authority
(CA). Public key cryptography breaks down if the CA can be subverted or
spoofed thereby providing false public keys for entities. The term Public Key
Infrastructure (PKI) is often used to refer to the set of APIs, tools, and services
that provide public key cryptography,

Hybrid approaches combine public and secret key cryptography. For example,
the Secure Sockets Layer (SSL) protocol [Stallings 1998] uses public key
cryptography to securely exchange a secret key (referred to as the session key)
during the connection establishment phase. Once the session key has been
exchanged, a more efficient secret key encryption algorithm is used for the
actual data transmitted over the communications channel.

Resource management encompasses allocation of resources to software agents
as well as ensuring that agents do not exceed their allocated bounds (often
referred to as resource control). Resource management is not a requirement that
is unique to software agents. However, agents often operate autonomously and
continuously without direct human supervision or intervention, making resource
management is more critical for agents. In particular, resource management is
essential to providing predictable behavior of and for agents.

Encryption
Service

Resource
Management
Service
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Note that resource allocation is often controlled through policies specified
through administration. Policy-based control for resource usage has been
explored by KAoS/NOMADS [Bradshaw 2001, Suri 2000] and Ponder/SoMA
[Damianou 2000, Bellavista 1999].

The primary resources used by agents are CPU time, memory, storage, and
network traffic. Resource allocation is usually specified in terms of a limit on
how much a resource can be used. Note that the network resource has a wider
scope than the rest, which are all part of a single system. The network resource
is often shared across several computers and hence requires more careful
management. Particular environments may necessitate additional limits (for
example, the number of files that might be opened concurrently, the number of
processes or threads that may be created, etc.)

Limits placed on resource usage fall into two categories: rate based and quantity
based. Rate based implies that the limit is specified in terms of a unit of time.
Examples are a network write rate limit and a disk read rate limit expressed in
bytes/sec. Quantity limits do not depend on time. Examples are the amount of
memory/disk space used and the area of the screen that has been occupied.

Approaches to resource allocation range from none to static to priority-based
approaches (like operating systems) to market-based. Frequently, resource
allocation is completely ignored. Agents are executed just like other computer
programs. Such an approach may be adequate in situations where agents can
consume all available resources on a system and allocation of the resources
between the agents is unnecessary (or there is only one agent running per
system).

In the static approach, administrators specify the allocation of resources through
policies. These allocations can be changed through subsequent changes to the
policies that govern the agents. The static approach is useful is situations where
the number and priorities of agents do not change very often. An advantage of
the static approach is simplicity and deterministic behavior.

Priority-based approaches allow administrators to specify the relative priorities
of agents on a system. The exact allocation of resources is then left up to a
software component. This approach is similar to that provided by most
operating systems and offers a good mix of administrator control and automatic
management.

Finally, market-based approaches are the most dynamic. In this approach,
agents are provided (artificial) currency, which they can use to get access to
resources. The cost of resources can vary based on availability and
administrators can provide additional currency to agents as needed. Unlike the
previous approaches, no external entity allocates resources to agents. Agents are
expected to negotiate for the resources they require. The resources that may be
given to agents will depend on the cost of the resource as determined by the
market demand. Current market-based approaches do not seem well suited to
direct administrator control of individual agent behavior and do not offer
deterministic behavior. However, for very large numbers of agents, market-
based approaches may be the only viable approach to resource allocation.
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The second major component of resource management is resource control,
which is responsible for making sure that agents access resources within the
limits that are allocated to them. Resource control is important for the safe
execution of agents unless agents are isolated and completely trusted.

Resource control has been recognized as an important requirement but has
largely been ignored by the research community. Agent researchers often view
resource control as a service that needs to be provided by the operating system
or language environment. Implementing resource control at the agent level is not
useful. The agent has to be trusted to self-impose the limits and even with the
best intentions may have a faulty implementation. In situations where the agents
cannot be trusted (such as with mobile agents), the infrastructure must provide
the necessary resource controls and safeguards.

Recently, work has started on implementing resource control mechanisms for
the Java environment. This is an important step because a (increasingly) large
percentage of agent software operates in the Java environment.

Persistence services allow the storing of information on some form of
secondary, semi-permanent storage mechanism (i.e., one that can survive the
restarting of a system). Agents may use persistence services for two different
purposes: to store the state of an agent or to store data.

One of the key capabilities of agents is to be able to adapt to the environment
and learn the preferences of users over time. The persistence service allows
agents to store information regarding the preferences of users. Agents may also
store other parameters regarding the system state. Therefore, persistence is key
to helping the learning characteristics of agents.

Agent state is used in two different contexts: data state and execution state. The
data state of an agent consists of the information held by the agent. In object-
oriented implementations, the data state consists of the values of the variables of
the objects that represent the agent. The execution state on the other hand
consists of the state of the thread or threads handling the execution of the agent.
A persistence service may support persistence of data state only or persistence
of data and execution state (persisting only execution state without the data state
would be meaningless). Providing support for persistence of execution state is
difficult due to two reasons. If an agent is interacting with another agent, then
the semantics of capturing the execution state of the first agent and not the
second agent are not well defined. First, capturing the execution state requires
support from the underlying execution platform, which is either a virtual
machine (such as a Java VM) or the operating system [Atkinson 2000, Suri
2002, Suri 2000, Sakamoto 2000, Truyen 2000]. Second, while it may be
possible to capture the state of an agent, restoring the state may be
problematical. (For example, the agent may have been in the middle of an
interaction with another agent which no longer exists.) In general, it is important
to design agents to be robust in the face of such situations.

Storing the state of an agent is important for survivability of long-running
agents. Computer systems often restart for various reasons such as faults,

Persistence
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power failures, or reconfiguration. A long-running agent must be able to survive
beyond one execution of a computer. Therefore, agents can use persistence
services to save their state so that they can recover in the event of a restart.

State persistence can also be used to improve scalability. If a system is
overloaded, persistence can be used to swap agents to temporary storage. The
persisted agents may then be reloaded at a later point in time or migrated to a
different system for execution (load balancing). [Uszok 2001].

Logging services record operations performed by software agents. The
operations can vary from transactions performed by agents to message traffic
between agents. Logging services help in non-repudiation by keeping record of
actions performed by agents. Also, logging of message traffic between agents
can assist in debugging. In some cases, the message transport service may offer
automatic logging or non-repudiation services.

Logging may be centralized or distributed. A centralized logging facility uses a
single service that handles all logging traffic. Centralization allows logging to be
ordered (sequenced in time)3 but introduces a bottleneck in the performance as
well as a single point of failure. Distributed logging uses several logging
services scattered through the network (but not necessarily one per host
executing agents). A distributed logging service scales well but introduces a
problem when multiple logs need to be merged to obtain a global view. The
problem can be mapped to the more general problem of gathering global state
information in distributed systems [Babaoglu 1993].

Logging of mobile agents is further complicated for two reasons. The first
problem arises if the logging facility changes as the agent moves around the
network. Therefore, even the log for a single agent may need to be assembled
from portions at different logging services. The second problem arises with
logging for non-repudiation of transactions, which requires that the transaction
be signed by a private key. However, if a mobile agent carries a private key with
the agent, then the key information may be extracted by a malicious host
[Jansen 1999]. While some solutions have been proposed [Jansen 1999, Sander
1997, Ferreira 2002], none of them solve the problem effectively.

Logging of message traffic between agents raises another challenge with
encrypted communications. Messages are usually encrypted so that only the
receiver of the message can decrypt the message. Therefore, it would be a
security violation if the logging service needs to be able to decrypt the messages
in order to log them. One possibility is to log the messages in their original
encrypted form. If the message traffic needs to be analyzed, then the necessary
decryption keys can be obtained through human intervention4.

                                                
3 Note that the sequencing will be based on the arrival of the messages or events at the
logging service. Due to varying latencies in the network and the impossibility of a
synchronized global clock, even a centralized logging service cannot guarantee globally
ordered logging of messages and events [Tanenbaum 2002].
4 This has an interesting analog in the real world where an entity wanting to monitor

Logging Service
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Logging services may also serve as a solution to protect agents from being
tampered by malicious hosts. Solutions proposed by [Sander 1997, Tan 2002,
Vigna 1998] rely on tracing the execution of an agent. The execution trace is
then logged either at the execution host or at a secondary location. In case the
execution of the agent needs to be checked (to detect tampering), the agent can
be reexecuted and the new trace compared with the original logged trace5.

This is a trusted service that agents can use to monitor the compliance of other
agents to publicly endorsed policy agreements. Reputation services are one of
the few mechanisms that are able to enforce obligations; since obligations
cannot be prevented but only required.

A typical use of a reputation service is for all parties to an agreement to `escrow'
their agreement with the reputation service. If one of the parties determines that
another party has defaulted on an obligation it may lodge a complaint with the
reputation service.

In software systems the concept of a legal remedy may seem moot; however,
simply recording instances of default and offering that information to others
querying the service may be a powerful deterrence mechanism. If an agent
defaults on an obligation, other agents and services may become more reluctant
to offer it facilities if they are able to query a reputation service.

Note: This service can be extended to encompass auditing functions, which are
linked to the logging tool described below.

A family of so-called coordination languages6 is emerging as an extension to
mobile-agent systems. Coordination languages provide higher-level
communication protocols such as generative communication and
publish/subscribe models.

While the theoretical models for “general mobility” can accommodate physical
mobility, none of the mobile agent system infrastructures currently available
provides support for migratory hosts. Host migration and ad hoc networking
are being addressed by work done on coordination.

This new research direction on “coordination languages” was started in the late
80’s by Gelernter with a programming model named Linda [Carriero, Gelernter
1989]. The common theme underlying most coordination languages is a form

                                                                                                                              

communications of individuals has to show just cause and obtain a warrant.
5 While several solutions have been proposed to protect agents from malicious hosts, most
(including execution tracing) are not practical and hence do not have any usable
implementations.
6 In this context coordination languages provide a programming model for coordination of a
number of parallel and distributed tasks. They operate at a much higher level than agent-to-
agent interaction languages.
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of associative communication in which a process can register an interest and
another can offer a service. The infrastructure (often called a tuplespace) then
matches interests with offers. Communication is thus uncoupled since no
explicit link needs to be established between communicating partners; a
message may be read at any time and by any process interested in it. These
properties make it straightforward to provide resource discovery protocols that
match up clients with servers based on their respective offers, to program in an
event-driven style and to dynamically configure running systems. There is a
vital research community focusing on coordination from the programming
language aspect with a yearly conference (Coordination), and a growing
influence: even Sun Microsystems’s Jini technology incorporates a
coordination language called JavaSpaces.

Traditional computational models assume that all devices and software
components are deployed before an application starts executing, and that once
deployed, configurations are static. In the field of wireless computing, however,
in which Personal Digital Assistants (PDAs) and other portable devices can
establish ad-hoc network connections, these assumptions do not hold. Instead
new computational models are needed to ease the task of developing
applications for such fluid environments. Mobile agents provide part of the
solution since they provide computation mobility, which allows an application to
reduce its dependence on an unreliable ad-hoc network. The mobility of devices
presents other challenges, however. In particular, current mobile-agent
infrastructures do not provide high-level communication primitives suited for
physically mobile systems. Experience with a medium-sized mobile-agent
application suggests that well over half of the application’s code deals with
communication in some way. This code is both tedious to write and the source
of many of errors.

Designing communication mechanisms for mobile environments is a
challenging task. Communication in a physically mobile system is:

- Transient and Opportunistic: Communication patterns must fit into
an environment where hosts are intermittently connected to the
network and agents can leave a host at any time. Communication
thus tends to be opportunistic, with applications taking advantage of
whatever network resources happen to be available at a particular
time, but not relying on their continued availability. The underlying
communication protocols must accommodate long latencies and/or
timeouts caused by the sudden departure of an interlocutor or the
disconnection of the agent itself.

-  Unnamed and Untrusted: Communication in mobile systems is
often based on the services being offered, rather than the identity of
the entity providing those services. As long as the needed services
are provided, agents do not necessarily have to know each other's
names and locations to interact. The corollary of anonymity is that
interlocutors do not necessarily trust each other, which implies that
the communication infrastructure must provide the mechanisms
needed to implement secure communication protocols.

Coordination languages describe a family of programming languages and
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infrastructures that provide communications mechanisms with the two
characteristics above. While the early coordination languages were based on
centralized systems, a new generation of languages targeted at ad-hoc networks
is emerging. The most widely known is Picco and Murphy’s Lime language
[Picco, Murphy, Roman 1999]. Lime is a decentralized coordination language
implemented in Java in which the central tuplespace of Linda is replaced by a
multitude of application-specific tuplespaces owned by mobile agents.
Whenever two mobile agents are located close to one another, their tuplespaces
are seamlessly merged to form a transiently shared data structure [Murphy,
Pietro, Roman 2001]. The advantage of systems like Lime is that they provide
simple ways to program resource-discovery protocols and other common
communication patterns in agent systems. Limitations of the original Lime
model have been partially addressed in [Carbunar,Valente,Vitek 2001], but this
area still requires attention from both the formal and implementation sides. The
most challenging problem is, as usual, how to provide security guarantees for
applications using a coordination language in untrusted networks. Once these
problems are addressed, however, coordination languages will provide a
powerful way for mobile agents to communicate when operating inside ad-hoc
wireless networks. Moreover, the mobile agent will contain very little
communication code itself, since the necessary (and complex) functionality will
be encapsulated inside the coordination-language infrastructure.

Ad hoc networking in combination with mobile code is also investigated in the
field of active networking, where active packets, a kind of miniature mobile
software agents, are used to deploy and execute customized routing algorithms
[Tschudin 2000].

As software agent systems increase in complexity, it becomes increasingly
important to provide the appropriate tools to deploy and manage them. Among
the factors leading to increased complexity are the number of agents, the
“sophistication” (i.e. unpredictability) of the agents, and the degree of
interconnectedness. The developers and administrators of these systems need
tools that provide convenient and easy to use abstractions for configuring agents
and for monitoring and controlling their execution.

It is worth noting that agent management is in most respects the same as any
other kind of system management. There are a variety of commercial
management systems which support discovery, topology management,
visualization, aggregation, and virtualization of managed resources, from disk
drives to web servers. While agent management introduces some new issues,
such as treating software components as security principals, the basic patterns
work quite well.

One promising approach to management is to organize agents into groups (also
referred to as domains) [Bradshaw 2001, Bradshaw 1999]. The groups may
then be nested to support a hierarchical organization. Groups may also overlap
(that is, agents may belong to more than one group). Hierarchy and overlap
allows construction of groups that can reflect human organizations. Agents may
be grouped for ownership, functional, or organizational purposes. Overlapping
groups allow modeling of agents that participate in multiple roles. Grouping is
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essential to keep agent systems manageable as the number of agents increase.

Controlling the execution of agents can be achieved through the use of policies
[Bradshaw 2001, Bradshaw 1999, Damianou 2000]. There are fundamentally
two kinds of policy statements: those relating to permissions and those relating
to obligations. Permission-style policy statements include authorizations (i.e.,
granting agents the right to perform an action) and negative authorizations (i.e.,
denying agents the right to perform an action). Obligation-style policy
statements include obligations (i.e., requiring agents to perform some an action),
and waivers (i.e., giving agents the option to not perform some action).

Policies may be expressed in a variety of languages. At one extreme they may
be written in some propositional or constraint language. There are a wide variety
of simpler schemes, each of which gives up some types of expressivity. The
choice of language for a particular application will be affected by considerations
of composability, computability, efficiency, expressivity, and amenability to the
detection of equivalence and the discovery of conflicts.

Policies may apply at a domain level (i.e., a group of agents), at the system level,
an execution environment level, or at an individual agent level. This means that
an agent may be subject to multiple, possibly conflicting, policies, and the policy
management tools should be capable of exposing and resolving these conflicts.

The use of a rich, fine-grained policy model such as this may have far-reaching
implications. In particular, one must decide whether the system is “enforced”
or “cooperative”. In an “enforced” system, every action by an agent which is
subject to policy control, is automatically checked, and may be disallowed.
Enforcement may be achieved through support from the platform or execution
environment (e.g., the Java VM) or by using proxy objects that are under
control of the policy system. In the latter case, agents perform actions on the
proxy objects, which consult the policy system before allowing the request to
proceed.7 This may be expensive and is not easily applied to legacy code. The
alternative is a “cooperative” approach (analogous to “cooperative
multitasking” on some ancient operating systems), in which agents explicitly
check each proposed action against the policy system. This is an unsatisfactory
way of handling security, to put it mildly. In either case, the policy engine may
become a bottleneck or single-point-of-failure, particularly where policies are
context-sensitive.

Debugging support is an important tool for managing agent systems due to
their asynchronous and distributed nature. The problems described in the
section on logging services apply to debugging also. The varying network
latencies and the impossibility of a global clock (or exactly synchronized clocks
on individual systems) make it difficult to obtain an accurate global view of the
system. Good visualization and logging tools will help in debugging problems
at the level of the infrastructure.

                                                
7 Proxies of this type are also called privileged code wrappers.
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Visualization tools allow the evolving state of the agent system to be observed.
Visualization may be tailored for different perspectives – administrators,
developers, and users – and is a necessary part of effective administration and
management tools.

Agent systems require visualization of several different aspects such as agent
life-cycle, errors, messaging, and operational compliance. Visualization of the
life-cycle shows agent startup and shutdown. Visualization of errors includes
premature termination of agents, non-terminating errors reported by agents, and
synchronization problems such as deadlock and livelock. Deadlock arises when
two or more agents are waiting on each other in a cycle and therefore will
remain waiting indefinitely. Livelock occurs when two or more agents
repeatedly try to perform the same operation at the same time resulting in all of
them aborting.

Visualization of message traffic is another important requirement. This
visualization is useful to discover both missing communication as well as
unintentional communication between agents (which may have resulted due to
an oversight in specifying security policies).

Visualization of resource consumption allows administrators to properly
allocate available resources amongst competing agents. Visualization may also
reveal resource abuse by certain agents (which could be malicious agents or
buggy agents).

Finally, mobility needs to be visualized. Mobility includes both mobility of
physical platforms that host agents as well as mobility of agents across
platforms. The difficulty here is keeping the visualization up to date with respect
to the state of the world – especially with fast-moving systems or agents.

The key challenge faced by visualization in agent systems is the same as in
distributed systems. The asynchronous nature of these systems implies that the
state information to be visualized is scattered across multiple systems that are
operating independently and concurrently. Therefore, the state information is
gathered via message-passing. However, transmitting the state information
across a network consumes a variable amount of time during which the system
continues to change. If the asynchronous nature is not taken into consideration,
the visualization will show artifacts (such as agents being located at incorrect
places or in multiple places, agents terminating before they appear to start,
agents receiving messages in a different order, etc.) [Birman 1996, Mullender
1993, Tanenbaum 2002]

Deployment is a difficult challenge often ignored by researchers. Currently,
deployment of agent software (especially multi-agent and mobile agent)
software is complicated and requires expert installation. A multi-agent system
may include agents from several different developers that need to be installed
separately on multiple systems. Even at the level of a single agent, several
separately installed components may be required. Versioning is an added
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concern when multiple agents share components.

Security and administration requirements further complicate deployment.
Properly configuring security is tedious and error-prone. When an agent
system is installed, security configuration might be too restrictive (or
misconfigured) causing the agent to fail. A common reaction is to weaken the
security until the agent is able to operate (and in the process weaken the security
of the overall system). Another possibility is that the initial security
configuration might be too weak but is never tightened since the agent operates
successfully. A good solution to the administration and management tools will
help in security weaknesses as described above. In particular, systems
administrators will understandably resist the proliferation of security systems,
and tend to prefer approaches that reuse existing mechanisms.

Mobile agents introduce a more challenging deployment problem. Mobile
agents derive many of their advantages by moving to systems other than the
initially installed host. However, mobile agents also require an execution
environment to receive and execute agents. Without the presence of the
execution environment on the target host, an agent will not be able to move to
the target host. Therefore, mobile agents require that execution environments be
deployed onto all the hosts to which agents might wish to move.

A further complicating factor is that today’s mobile agent systems do not
interoperate well. An agent written using a particular mobile agent toolkit cannot
execute on a different toolkit’s execution environment. If a system utilizes
agents based on different mobile agent toolkits, then all the necessary execution
environments must be deployed onto the target systems [Pinsdorf 2002,
Magnin 2002, Grimstrup 2001]

One of the capabilities of mobile agents is to handle unexpected scenarios by
dynamically moving capabilities onto systems. In order for this capability to be
realized to its full potential, execution environments must become ubiquitous.
Given this capability, mobile agents can actually help solve the deployment
problem by moving and installing components on systems.

Examples of Prior Work on Infrastructure

The CoABS Grid [Global InfoTek, Inc. 2002] was developed by Global
InfoTek and ISX Corporation as part of the DARPA-sponsored Control of
Agent-Based Systems (CoABS) [Global InfoTek, Inc. 2002]. The primary
motivation for the Grid was to create an integration platform for legacy stove-
piped systems. The Grid is Java-based and built on top of the Jini architecture
[Oaks 2000, Sun Microsystems, Inc. 2002, Sun Microsystems, Inc. 1999] from
Sun Microsystems (although it can support agents in other languages through
proxies).

The key capabilities of the Grid are registration, lookup, and messaging. The

CoABS Grid
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Grid supports both agents and services (with services nominally being passive
entities that are tasked by agents). Agents are modeled as a specialization of
services. We will describe only agent-relevant aspects in the remainder of this
section.

The Grid provides a registry for agents and services based on the Jini Lookup
Service (LUS). Agents can register meta-information with the Grid. Agents also
store a proxy to themselves in the registry. Therefore, other entities can search
for an agent and retrieve a reference to the target agent’s proxy, which allows
messages to be sent to the target agent. The Grid defines a standard template for
agent meta-information that can be filled-in by an agent when it wishes to
register with the Grid. This template allows an agent to identify the name of the
agent, the owner, the architecture, the agent communication languages (ACLs),
the messages content languages, and the ontologies supported by the agent.
Additional domain-specific attributes can also be added to the registry.

Agents can search for other agents on the Grid through the registry. Searches
can be performed based on the agent meta-information template described
above. Predicate-based searches are also supported, which allows agents to
perform more sophisticated searches matching with complicated matches on
several attributes. The result of a lookup is a set of matching agent proxies –
objects that represent the agents that have been found. At a minimum, a proxy
allows messages to be sent to the agent. The Grid allows agents to create
custom proxies with additional specialized operations.

Messaging in the Grid is asynchronous. The transmitting agent sends a
message to the recipient by adding the message to the recipient’s message
queue (done via the recipient’s proxy). Each message contains the sender’s
proxy so that the recipient can reply easily. More sophisticated forms of
messaging can be provided via custom agent proxies. Secure communication is
provided through encryption and includes both authentication of the sender as
well as secure transmission of the message on the wire. The grid also provides a
logging service that can be enabled via a central control. Logging allows the
message traffic between agents to be recorded for later analysis or debugging.

A set of GUI tools for administration and monitoring round out the Grid
software. The GUI tools allow configuration of the grid, startup, and shutdown
operations. A simple visualization of the registry allows administrators to view
the current set of registered agents.

Since the Grid is built on top of the Jini environment, all of the capabilities of
Jini are also available within the Grid environment. For example, the Grid takes
advantage of Jini’s ability to have replicated lookup services. Similarly, the Grid
takes advantage of Jini’s proxies and mobile code capabilities. The designers of
the Grid expose the lower Jini layer and encourage users to tap into the
capabilities of Jini.

The main contribution of the Grid is providing an integrating platform for
heterogeneous agent systems. Prior approaches have relied on specifying
standards to which agent software must be written. The Grid’s approach is to
take different agent systems and make them interoperable through runtime
support. However, a key requirement to make this a reality is semantic
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interoperability (which is addressed in its own section in this report).

FIPA (Foundation for Intelligent Physical Agents) [Foundation for Intelligent
Physical Agents 2002] is a standards organization that specifies standards for
software agent systems. FIPA began in 1996 and published the first set of
specifications in 1997 (referred to as FIPA 97) and a revised set in 1998 (FIPA
98). FIPA’s goal was to provide interoperability between different agents and
agent systems.

Recently, FIPA has adopted a more flexible approach by developing a
specification for an abstract architecture [Foundation for Intelligent Physical
Agents 2001]. The abstract architecture allows FIPA-compliant agent systems
to be realized using a variety of existing industry standard services and
technologies. The earlier standards published by FIPA fit within the umbrella
defined by the abstract architecture.

The main abstraction defined by FIPA is that of an Agent Platform (AP). The
Agent Platform contains a number of services the most important of which is
the Agent Management System (AMS) [Foundation for Intelligent Physical
Agents 2001b]. The AMS handles the creation, registration, lookup,
communication, migration, and termination of agents. Two other mandatory
services that must be provided by an AP are a Message Transport Service
[Foundation for Intelligent Physical Agents 2001c] that handles the encoding
and transmission of messages between agents and a Directory Service
[Foundation for Intelligent Physical Agents 2001] that handles the lookup of
agents.

FIPA agents communicate through message passing that is handled by the
Message Transport Service. FIPA also defines the format of the messages as
part of the Agent Communication Language (ACL) [Foundation for Intelligent
Physical Agents 2001d] specification as well as a representation in XML
[Foundation for Intelligent Physical Agents 2001e].

FIPA specifies but does not mandate the use of a number of Content
Languages, which define the content of the ACL messages. Examples of
Content Languages include KIF (Knowledge Interchange Format) [Foundation
for Intelligent Physical Agents 2001f, Knowledge Systems Laboratory 2002]
and RDF (Resource Description Framework) [Foundation for Intelligent
Physical Agents 2001g, World-Wide-Web Consortium 2002]. In addition to
Content Languages, FIPA also defines a Communicative Act Library
[Foundation for Intelligent Physical Agents 2001h] that defines common
communicative acts that can be included in agent messages.

Another communication-related set of specifications covers interaction protocols
[Foundation for Intelligent Physical Agents 2001i]. Interaction protocols go
beyond one-way messaging and specify sequences for messaging. FIPA
defines a number of interaction protocols for requests, queries, auctions, etc.

A number of other specifications cover areas such as ontologies [Foundation
for Intelligent Physical Agents 2001j], policies and domains [Foundation for

FIPA
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Intelligent Physical Agents 2001k], and application-specific agents.

A number of FIPA compliant agent systems have been developed. Examples are
Jade [Bellifemine 2001, JADE 2002], April [McCabe 1994, April 2002], and
FIPA-OS [FIPA-OS 2002]. The Agentcities project is a FIPA-related effort to
establish a large network of interconnected FIPA-compliant agent platforms
throughout the world [Agentcities 2002].

The Java Agent Services (JAS) project is an initiative to define an industry
standard API specification for delivering software agent infrastructures in the
Java environment [McCabe 2002]. The JAS implements the FIPA Abstract
Agent Architecture [Foundation for Intelligent Physical Agents 2001] within the
auspices of the Java Community Process (JCP) [Sun Microsystems Inc. 2002].
As of this writing, the JAS specification has been released for public review.

The JAS API defines a set of Java interfaces that deliver a layer of open
interoperability between agents through the core services of message transport,
agent directory (registry) services and agent naming services. Message transport
includes support for message composition, encoding and transmission between
agents using arbitrary application transport protocols.

The API also specifies a Service Root construct which is used to deliver
references to infrastructure services to an agent at startup.

The JAS widely employs a collection called the JasBean, modeled on the
JavaBean concept, that defines a collection of key-value attribute pairs. Many of
the interfaces defined by JAS extend this collection, providing setter and getter
methods to set and retrieve the key-value tuples. Using a tuple-based interface to
data structures increases flexibility and implementers are free to add additional
key-value pairs as needed and to store the parameters in any suitable manner.

The JAS project also delivers a Reference Implementation of the API, which
includes a Service Provider Interface (SPI) model and a message representation,
called the Abstract Content Representation (ACR), in addition to several
exemplar services.

In the SPI model instances of new services are generated using service factories;
a given factory being responsible for creating a given type of service. Using the
standard Factory Pattern a framework can be built that supports the dynamic
addition of services through the SPI interfaces.

The ACR is a UML based model of abstract elements that defines the syntactic
attributes of Agent Communication Language (ACL) encoded messages and
arbitrary content languages. The motivation for this is to abstract the common
features of such languages into a single semantically neutral representation that
can be supplied to transport codecs.

The ACR essentially maps the predications, terms, propositions, actions,
quantifiers, variables, constants and connectives of content languages, and the
attributes of ACL expressions into a set of syntactic elements and relations.
This avoids the necessity for n-to-n mappings typically required between

JAS
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different content languages (such as KIF, RDF, etc.) and message encoding
schemes (such as XML, Java RMI, etc.). Instead, ACR acts as the intermediate
representation so that a message using any content language can be
encoded/decoded with reduced complexity.

Example mappings of the core services available through the API are:

Message Transport Service can map to RMI [Remote Method Invocation 2002],
TCP/IP [Stevens 1994], SMTP [Stevens 1994], HTTP [Stevens 1996], IIOP
[Object Management Group 2002], SOAP [Simple Object Access Protocol
2002], and others. The Directory Service can map to RMI [Remote Method
Invocation 2002], LDAP [Howes 1997], UDDI [UDDI 2002, UDDI 2000],
and others.

Since JAS is an extension of to Java platform, agents written in the JAS
environment also have access to the rich Java platform API. This implies that
agents hosted within JAS based environments will also benefit from the
continued development of Java and related technology.

Grid computing is an evolution of distributed computing and is based on the
metaphor of the electrical power grid. The goal of grid computing research is to
make computational power as easily accessible and useable as electrical power.
In the electrical infrastructure, power is transmitted from producers of electricity
to consumers through a national power distribution grid. A computational grid
tries to provide computational power in much the same manner. The emphasis is
on transparent availability of needed computational and data resources
regardless of geographical location.

Computational grids interconnect large supercomputing centers and large data
warehouses in order to provide high-performance computing to end-users.
Grids can be hierarchical with regional grids interconnecting local ones and
national grids interconnecting regional ones. One of the enabling technologies
for grid computing is high-speed and high-capacity networks. As broadband
connectivity becomes more pervasive, more and more end users will be able to
tap into computational grids.

Foster and Kesselman list several application areas for grid computing
including distributed supercomputing, high-throughput computing, on-demand
computing, data-intensive computing, and collaborative computing. [Foster
1999].

Computational grids are also viewed as an enabling technology for new kinds of
applications. Example applications include teleimmersion, telemedicine, global
weather forecasting, molecular modeling, material science, and genetics research.

An interesting difference between electrical grids and computational grids lies in
the role of the consumers and producers. In electrical grids, producers are often
distinct from consumers. In computational grids, consumers may be able to act
as providers of resources when their end-systems are idle [Suri 2001, Gimps
2002]

Grid Computing
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Large-scale grid computing efforts include the NASA Information Power Grid
[Johnston 1999], The NSF-sponsored TeraGrid [TeraGrid 2002], and the
European Union sponsored DataGrid [DataGrid 2002] among many others.
The Global Grid Forum [Global Grid Forum 2002] is an organization that
facilitates cooperation amongst grid computing researchers and publishes open
standards for adopters.

Recently, computational grids and web services have started to merge. The goal
of web services is to provide infrastructure for services to be advertised, found,
and accessed over the Internet using Web-style protocols. Web services and
computational grids face many similar challenges: description and advertisement
of services, description and matchmaking (lookup) of service requests,
invocation of services (possibly with attached contracts regarding quality of
service or other constraints), and the accounting mechanisms to charge for
resource usage. Recognizing the overlap, the Globus group have recently
announced the Open Grid Services Architecture (OGSA) [Argonne National
Labs 2002] that brings grid services and web services infrastructure closer
together.

Traditional computational grids differed from agent-based systems in their
scope, features and capabilities as well as their target application domains, with
the goals for grid computing being closer to traditional distributed systems.
However, recent work in grid and web services are making them more dynamic,
late-binding, and long-lived. These are also characteristics of multi-agent
systems. Many research areas in grid computing such as network
communications infrastructure, service discovery, and resource management
overlap with agent systems research. As the economic benefits help drive
companies such as IBM and Microsoft to foster web services, agent-based
systems can take advantage of grid computing and web services infrastructure.

Traditional distributed computing architectures use the client-server pattern
where the number of clients far exceeds the number of servers. Moreover, the
systems are specialized to act either as clients or servers but not both. Peer-to-
peer architectures, on the other hand, blur the distinction between the client and
the server, with a majority of the systems having dual personalities: they can
behave as clients or as servers. The goal is to move away from centralized
servers, which are single-points of failure as well as performance bottlenecks.
As systems become larger in scope and size, traditional client-server approaches
will not be able to meet the scalability demands.

Peer-to-peer networking has been popularized by media-sharing applications
such as Napster [Napster, Inc. 2002] and Gnutella [Gnutella 2002]. Both of
these applications provide, to varying degrees, peer-to-peer sharing of data. The
Napster approach still uses a centralized directory of shared data but peer-to-
peer transfer of data. The Gnutella approach uses self-organizing networks with
a distributed directory and search mechanisms. However, even the Gnutella
approach requires a bootstrap directory of clients in order for a new client to
discover other peers and join the network.

While file sharing has popularized peer-to-peer architectures, it is far from the
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only application available. Personal computers have long supported peer-to-peer
networking over Local Area Networks with additional capabilities such as
printer and modem sharing. Computational grids may also use peer-to-peer
approaches to locate and share processing resources. Companies such as
Entropia are developing computing frameworks that allow cluster computing to
be performed on computers connected via peer-to-peer networks. Also, groups
such as the Peer-to-Peer Working Group [Peer-to-Peer Working Group, 2002]
are developing standards to help accelerate the research and application of peer-
to-peer computing architectures.

Software agent architectures have traditionally been peer-to-peer. The
autonomous nature of agents implies that agents may at any time initiate
requests to other agents as well as receive requests from other agents, thereby
naturally making them peer-to-peer.
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Risks
Infrastructure is the lowest layer of software agent systems and provides critical
services such as administration and management, secure messaging, resource
management, and visualization. Using infrastructure does not add any risks to
software agent systems. In fact, well-designed infrastructure and tools can help
mitigate risks that other agent technologies might introduce. For example,
policy-based management and control of agent systems can help to make sure
that agents act within specified bounds and do not misbehave. Visualization
tools can help identify inappropriate or undesirable behavior of agents.
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Forecast
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Forecast Table

Technology
element

Near term
2 0 0 1 - 2 0 0 3

 Midterm
2 0 0 4 - 2 0 0 6

Long term
2 0 0 7 - 2 0 1 0

Infrastructural Technologies

Administration and
Management Tools

10s of agents; multiple
systems; simple security
policies

100s of agents; 10s of
systems; complex
security policies;

1000s of agents; 100s of
systems; self-adaptive
security policies

Authentication Authentication of small-
scale agent systems

Authentication with
revocation for long-lived
agents

Seamless authentication
with identity protection on
a global scale

Registration and
Lookup

1000s of agents; local
registries

100000s of agents;
regional registries

Millions of agents; global
registries

Message Transport Simple policies to govern
message sequencing

Sophisticated message
sequencing policies

Same

Encryption Services Efficient, secure
encryption algorithms

Same Same

Resource
Management

Resource control for
individual agents

Resource allocation and
control for groups of
agents

Resource management
for large groups of agents

Persistence
Services

Persistence of agent data
state

Persistence of agent
execution state

Transparent and
automatic persistence of
complete agent state

Logging Services Limited logging of small
groups of agents

Logging of large groups
of agents and of mobile
agents

Fully distributed, secure,
and efficient logging of all
agent actions

Coordination
Services

Research prototypes for
coordination in small-
scale ad-hoc networks
with host mobility.

Intelligent resource
discovery prototype for
wireless devices.

Adoption of an XML-
based coordination
language for small
devices.

Semantics of
coordination languages
codified.

Adoption of standardized
coordination protocols for
wireless devices.

Integration of MA
technology with
coordination languages.

Debugging Tools Debugging of individual
agents

Debugging of mobile and
multi-agent systems

Debugging of large-scale
agent systems

Visualization Tools Limited visualization of
small multi-agent systems
and small groups of
mobile agents

Visualization of 1000s of
agents

On-demand, secure
visualization of large-scale
agent systems

Deployment Tools Limited deployment tools
for local networks

Deployment tools for
large intranets and the
Internet

Global deployment of
agent platforms and
agents
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Figure 1. Agents Infrastructure Forecast Table
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Summary and Recommendations
Infrastructure for software agents consists of services and tools that used by
software agents as well as their developers and users. The infrastructure needs
to address challenges such as security, scalability, robustness/fault tolerance,
efficiency, accessibility, and interoperability. While somewhat similar to
distributed systems, software agents have a number of characteristics that are
unique such as long-lived identity and state and an autonomous execution
model with the ability to adapt and be proactive. Software agent infrastructure
needs to address agent specific requirements although it can build upon existing
research and implementations of distributed system infrastructure.

Services that should be provided by the infrastructure include identity
generation, authentication, registration and lookup, message transport, resource
management, persistence, logging, and encryption. In additional tools to support
administration and management, debugging, visualization, and deployment are
needed.

A number of efforts are currently underway to develop software agent
infrastructure. The CoABS Grid is an integration framework for multiple agent
systems and infrastructures. The Java Agent Services (JAS) effort specifies a
standard API for the Java™ Platform from Sun Microsystems. FIPA is a
standards organization that has published a number of specifications on
infrastructure for supporting interoperability between agents. Grid computing is
a more traditional distributed systems approach that also has an impact on
agents.

Our recommendation in this area is that research should be continued in both
the distributed systems infrastructure area as well as the software agents
infrastructure area. Key challenges such as scalability, distributed security,
administration and management tools, and deployment must be addressed.

Many of the issues discussed in this chapter are the subject of ongoing work.
This needs to be both encouraged and made use of where possible. Other areas
currently have a lower commercial priority, such as high-level security and
deployment, and as such will require more extensive investigation and
development.
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